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Multiconfigurational Wave Functions

MCSCF method is crucial when degeneracy or near-degeneracy
occur between different electronic configurations.

• Describe bond breakings
• Excited state
• Transition metal
• Open-shell system

Multiconfigurational Self-Consistent Field; generalization of the
Hartree-Fock wave function to system dominated by more than
one electronic configuration.
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MCSCF Concept
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• Introduce as small number of (active) orbitals: ≈10−20 with occupation 
numbers η allowed to vary.

• Active orbitals with occupations: 0 ≪ η ≪ 2

• Select configurations (many-particle basis states) to include.

• OPTIMISE the orbitals and the CI coefficients

• Simplify general MCSCF ansatz by including all configurations generated by 
allocating all active electrons to these active orbitals

• MCSCF optimization based on this simplification is coined as complete active 
space self-consistent field — or simply CASSCF



In this approach partion the MO space into three subspace containing the inactive, 
active and virtual orbitals.

Introduce a small number of orbitals (active orbitals), where the occupation are 
allowed to vary. 

The active orbitals are those which (for some geometry ) has occupation numbers 
significantly larger than 0 and smaller than 2. 

Select MCSCF Configuration Spaces

Inactive orbitals

Active orbitals

Virtual or external orbitals
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MCSCF Purpose
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• MCSCF does not describe the short-range correlation contributions 
that arise as r12 → 0, that is dynamical correlation.

• MCSCF aims at including non-dynamical correlation that arises 
from

ü configurational near-degeneracies and/or

ü gross deficiencies in the RHF wave function

• Includes near-degenerate orbitals to account for static correlation

• Will in general not describe the complete correlation energy!



MCSCF Purpose

6

• MCSCF does not describe the short-range correlation contributions 
that arise as r12 → 0, that is dynamical correlation.

• MCSCF aims at including non-dynamical correlation that arises 
from

ü configurational near-degeneracies and/or

ü gross deficiencies in the RHF wave function

• Includes near-degenerate orbitals to account for static correlation

• Will in general not describe the complete correlation energy!



Some molecules are not well-described by a single Slater determinant, 
e.g. O3

Multi-reference Problem

zwitterionic biradical

 

F'

 

F''

Both determinants are important for a qualitative description! 
Both determinants should be used as reference in the truncated scheme!
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Multi Reference Configuration Interaction (MRCI)
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F''

 

FMR-CISD = ¢ c ¢ F + ¢ ¢ c ¢ ¢ F + ¢ c i
a ¢ F i
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double excited quadruply excited wrt

 

F'

MR-CISD includes higher than double excitation wrt to Hartree-Fock!! 
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Complete Active Space (CAS) SCF method
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Complete Active Space (CAS) SCF method

In CASSCF distributing the active electrons in all possible ways
among the active orbitals: a full CI in the active space.

We still have to choose the active orbitals, but then configuration
generation is automatic.

Number of configurations generated 
in an [n,m]-CASSCF wave function

 

CSFs=
M!(M +1)!
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n=m Number of CSFs
2 3
4 20
6 175
8 1764
10 19404
12 226512
14 2760615

N number of electrons
M number of basis
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Selection of MCSCF Configuration Spaces

Usually, the greatest difficulty faced in setting up an MCSCF 
calculation is the selection of configuration space. (not yet Black Box)

Even for rather small system, it is often impossible to generate an 
MCSCF configuration space sufficiently flexible to describe the 

physical process and also to be computational tractable.

Ad hoc choices of configurations 
(very useful when you already know the answer. . . ) 

More systematic approaches, e.g., all configurations required for 
proper dissociation. 

Easy for diatomics, but dissociation to what in a polyatomic?
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CASSCF – active orbital spaces

• Sometimes simple and intuitive like for H2: (σg, σu)2—> CAS(2,2)

• Ground state of N2 requires 2p orbitals: (σg, πu, πg, σu)6 —> CAS(6,6)

• Picking CAS for main-group dimers can be straightforward... but does 
not necessarily have to be the case.

• Transition metal dimers are far from trivial!

• In general, including the full valence space is not an option (too 
many e-/o) Simple guidelines:
ü Breaking a C-H or C-C bond in a hydrocarbon —> include (σ, σ*)2

ü Spectroscopy/reaction of aromatic/conjugated π-systems —> include (π, π*)



The Choice of active orbitals requires an insight into electronic 
structure, which often rather obvious.

1) For each occupied orbital, there will typically be one
corresponding virtual orbital. This leads naturally to [n,m]-CASSCF
wave functions, where n and m are identical or nearly so.

2) Should include all orbitals where the occupation number
changes significantly during a process (like a reaction, excitation,
ionization), or where the occupation number differs significantly
from two or zero.

3) Active orbital space will be different on different parts of an
energy surface.

4) The orbital energies from an UHF calculation may be used for
selecting the important orbitals.

Choosing the Active Orbitals
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5) In the optimal case, an energy gap occurs between active

orbitals, inactive and also external orbitals.

6) The natural orbitals of a UHF wave function will have partial

occupation numbers, and useful to divide occupied orbitals

into inactive and active.

7) running a preliminary MP2 or CISD calculation prior to the

MCSCF to include some electron correlation, and obtain

orbitals with non-integer occupation numbers.

8) If the underlying RHF wavefunction is poor, the MP2 correction

may also give poor results, and selecting the active MCSCF

orbitals based on MP2 occupation number may again lead to

erroneous results.

Choosing the Active Orbitals
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Restricted Active Space (RAS) SCF model

RASSCF introduce several active spaces and restrict the number of 
electrons in each subspace in some way.

Employs five orbital subspaces instead of three: 

1. Inactive orbital space 
2. RAS 1 space: upper limit on the 
allowed number of holes.
3. RAS 2 space: no constrain on the 
occupation  
4. RAS 3 space: upper limit on the 
allowed number of electrons. 
5. External orbital space
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• Closed Shell SCF (RAS1, RAS2, RAS3 empty). 

• CASSCF (RAS1 and RAS3 empty).

• SDTQ...CI with a closed shell reference function (RAS2 empty).  

•Multireference SDCI with a CASSCF reference (max two holes in 
RAS1 and max two electrons in RAS3). 

Restricted Active Space (RAS) SCF model

The RAS concept complicates the orbital optimization. 
It is necessary to introduce orbital rotations between the three 

RAS spaces, which may lead to convergence problems.  
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Multiconfigurational Wave Functions

In MCSCF theory, the wave function is written as a linear
combination of the determinants or CSFs, whose expansion
coefficients are optimized simultaneously with the MOs according
to the variation principle.

 

Y = Fm
m
å Cm

 

T,C = exp(- ˆ T ) Cm m
m
å

 

exp(- ˆ T )

 

Cm are the configuration expansion coefficients

carries out orbital rotation in the same way as for HF wave functions

 

EMC = min
T ,C

T, C ˆ H T, C
T, C T, C

This model allows for a highly flexible description of the 
electronic system.
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Optimization of MCSCF Wave Functions

The Wave Function

 

Y = Fm
m
å Cm

 

¢ 0 = ¢ m 
m
å Cm

or

The optimization problem

 

E =
¢ 0 ˆ H ¢ 0 
¢ 0 ¢ 0 

Determine the MOs and the MC coefficients using the variational
principle
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Optimization of MCSCF Wave Functions

Hamiltonian (Second Quantization)

 

ˆ H = hij
ˆ E ij

ij
å + 1

2 gijkl ( ˆ E ij
ijkl
å ˆ E kl -dkj

ˆ E il )

 

hij = fi
*(x) ˆ h (x)ò f j (x)dx

 

gijkl = fi
*(x1)f j (x1) ˆ G (x1,x2)ò fk

*(x2)fl (x2)dx1dx2ò

are the one- and two-electron integrals.

 

ˆ E ij = ˆ a 
ia

+ ˆ a 
ja

+ ˆ a 
ib

+ ˆ a 
jb

“Excitation or generator 
operator” define as:
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Optimization of MCSCF Wave Functions

Contribution from one-electron operator

 

ˆ h = hij
ˆ E ij

ij
å

 

m ˆ h n = hij m ˆ E ij n
ij
å = hijDij

mn

ij
å

One-electron operator:

Matrix elements:

 

Dij
mn is the one-electron coupling coefficients or density matrix.

Contribution from two-electron operator

Two-electron operator:

 

ˆ g = 1
2 gijkl ( ˆ E ij ˆ E kl -d jk

ijkl
å ˆ E il )

Matrix elements:

 

m ˆ g n = gijkl m ˆ E ij ˆ E kl -d jk
ˆ E il n

ijkl
å = gijklPijkl

mn

ijkl
å

 

Pijkl
mn is the two-electron coupling coefficients or density matrix.
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Optimization of MCSCF Wave Functions

Total MCSCF energy

 

E = 0 ˆ H 0 = hijDij
ij
å + gijkl

ijkl
å Pijkl + hnuc

• One- and two-electron integrals       and        contain the 
information about the molecular orbitals (the MO coefficients).

 

hij

 

gijkl

• The density matrices D and P contain the information about 
the CI coefficients.

• Energy depends on MOs and CI coefficients, so these parameters 
to be varied.
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Optimization of MCSCF Wave Functions

Parameterization:

In the classical MCSCF method we :
1. Take a finite CI expansion with the fixed molecular orbital 

for their construction.

2. Calculate the coefficients for CSFs by the variational method 

(the molecular orbitals do not change)

3. Vary the MO coefficients at the fixed CI coefficients to 

obtain the best MOs.

4. Return to point 1 until self-consistency is achieved.
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Optimization of MCSCF Wave Functions

Exponential Parameterization (Unitary MCSCF method):

We need two mathematical facts to present the unitary MCSCF method.  

First : if     is a anti-Hermitian operator, i.e.                 then                       
is a unitary operator satisfy

Second: this is the commutator expansion.

!!

 

e- ˆ A ˆ H e ˆ A = ˆ H + [ ˆ H , ˆ A ]+
1
2!

[[ ˆ H , ˆ A ] , ˆ A ]+
1
3!

[[ ˆ H , ˆ A ] , ˆ A ] , ˆ A ]+L

 

ˆ A 

 

ˆ A + = - ˆ A 

 

ˆ U = exp(i ˆ A )

 

ˆ U + ˆ U = ˆ U ˆ U + =1

MOs are orthonormal and we wish to preserve it.
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Optimization of MCSCF Wave Functions

Exponential Parameterization (Unitary MCSCF method):
We introduce two new operators:

Where T is an anti-Hermitian operator,  

 

ˆ T + = - ˆ T 

MOs are orthonormal and we wish to preserve it therefore used unitary
transformation.

 

ˆ a i
+and ˆ a j are the creation and annihilation operator, respectively. 

 

ˆ T = Tij
ˆ E ij

ij
å

 

ˆ E ij = ˆ a 
ia

+ ˆ a 
ja

+ ˆ a 
ib

+ ˆ a 
jb

We rewrite the above equation for spin-orbital:
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1) ˆ T = Tij ˆ a i
+

ij
å ˆ a j



Optimization of MCSCF Wave Functions

Exponential Parameterization (Unitary MCSCF method):

 

0 = Cm
m
å m

The variational parameters for the CI part of the wave function
could be CI coefficient Cm in the MCSCF wave function.

The variational of CI coefficient are made with restriction that total wave 
function remains normalized. 

 

Cm
2

m
å =1

The problem can be solved by the complementary space        which is orthogonal to 
MCSCF state       : 

 

K

 

0

 

0 K = 0

Variation describe by unitary rotation between the MCSCF state and the 
complementary space

 

SK 0 are variational parameters

 

ˆ S + = - ˆ S 

 

¢ 0 = e ˆ S 0unitary transformation of       :

 

0

 

¢ 0 remains normalized.
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2) ˆ S = SK 0( K 0
K¹0
å - 0 K )



The energy function

Optimization of MCSCF Wave Functions

 

¢ 0 = e ˆ T e ˆ S 0

• Transformation of both orbital and configuration space 

•Wave function is normalized 

• The parameters T and S can vary freely

• The order of operators is not arbitrary 

 

E(T,S) = 0 e- ˆ S e- ˆ T ˆ H e ˆ T e ˆ S 0
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The optimal energy

Optimization of MCSCF Wave Functions

 

E = ¢ 0 ˆ H ¢ 0 = 0 e- ˆ S e- ˆ T ˆ H e ˆ T e ˆ S 0

Vary T and S such that the energy becomes 

 

¶E
¶Tij

= 0

 

¶E
¶SK 0

= 0

Expand through second order in T and S

 

E (2)(T, S) = 0 ˆ H 0 = 0 [ ˆ H , ˆ T ] + [ ˆ H , ˆ S ] 0

+ 0 1
2

[[ ˆ H , ˆ T ] , ˆ T ] +
1
2

[[ ˆ H , ˆ S ] , ˆ S ] +[[ ˆ H , ˆ T ] , ˆ S ] 0
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1. The Newton Raphson method 
2. Approximate /Quasi Newton methods 

Solutions 

The Newton-Raphson method in general 

!!

 

E(p) = E(0)+ ¶E
¶pi

æ 

è 
ç 

ö 

ø 
÷ 

i
å

0

pi +
1
2

pi
¶2E
¶pi¶p j

æ 

è 
ç ç 

ö 

ø 
÷ ÷ 

ij
å

0

p j +L

!!

 

= E(0)+ g+p+
1
2
p+Hp +L

g is the gradient vector and H is the Hessian matrix

Taylor expansion of the E=E(p) around a point p0:
We arbitrarily can put p0 = 0.

Try to find a stationary point for a function E(p), where p is a set of
parameters that can be freely varied.
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The Newton-Raphson method in general 

 

E(p) » E (2) = E(0)+ ¶E
¶pi

æ 

è 
ç 

ö 

ø 
÷ 

i
å

0

pi +
1
2

pi
¶2E
¶pi¶p j

æ 

è 
ç ç 

ö 

ø 
÷ ÷ 

ij
å

0

p j

 

¶E (2)

¶pi
= 0® g +Hp = 0 (p= -H-1g)

An approximation to the stationary point is found by finding the
stationary point energy truncated at the second order of E(2).

For this p, a new g and H is constructed, and continue until convergence.
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E (2)(T, S) = 0 ˆ H + [ ˆ H , ˆ T ]+ [ ˆ H , ˆ S ]+
1
2

[[ ˆ H , ˆ T ] , ˆ T ]+
1
2

[[ ˆ H , ˆ S ] , ˆ S ]+[[ ˆ H , ˆ T ] , ˆ S ] 0

Expand the exponential operators to second order 

First term is the zeroth order energy E(0,0).

Second term gives the first derivative with respect to Tij. 

Orbital gradient 

 

ˆ T = Tij
i> j
å ( ˆ E ij - ˆ E ji) = Tij

i> j
å ˆ E ij

-

 

¶E
¶Tij

= gij
o

The stationary requirement              is the Extended Brillouin Theorem.   

MCSCF gradient and Hessian

 

0 [ ˆ H , ˆ T ] 0 = Tij
i> j
å 0 [ ˆ H , ˆ E ij

- ] 0

 

gij
o = 0 [ ˆ H , ˆ E ij

- ] 0

 

gij
o = 0
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E (2)(T, S) = 0 ˆ H + [ ˆ H , ˆ T ]+ [ ˆ H , ˆ S ]+
1
2

[[ ˆ H , ˆ T ] , ˆ T ]+
1
2

[[ ˆ H , ˆ S ] , ˆ S ]+[[ ˆ H , ˆ T ] , ˆ S ] 0

Expand the exponential operators to second order 

Third term gives the first derivative with respect to SK0. 
The CI gradient 

 

¶E
¶SK

= gK
c

MCSCF gradient and Hessian

 

0 [ ˆ H , ˆ S ] 0 = SK 0 0 ˆ H K + K ˆ H 0( )
K¹0
å

 

gK
c = 2 K ˆ H 0

31



 

E (2)(T, S) = 0 ˆ H + [ ˆ H , ˆ T ]+ [ ˆ H , ˆ S ]+
1
2

[[ ˆ H , ˆ T ] , ˆ T ]+
1
2

[[ ˆ H , ˆ S ] , ˆ S ]+[[ ˆ H , ˆ T ] , ˆ S ] 0

Expand the exponential operators to second order 

The Hessian matrix is divided into three parts:
Second derivatives

MCSCF gradient and Hessian

 

H =
Hcc Hco

Hoc Hoo

æ 

è 
ç 

ö 

ø 
÷ 

Orbital-orbital part (oo)
Configuration-configuration part (cc)
CI coupling part (co) 
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E (2)(T, S) = 0 ˆ H + [ ˆ H , ˆ T ]+ [ ˆ H , ˆ S ]+
1
2

[[ ˆ H , ˆ T ] , ˆ T ]+
1
2

[[ ˆ H , ˆ S ] , ˆ S ]+[[ ˆ H , ˆ T ] , ˆ S ] 0

Expand the exponential operators to second order 

The Hessian part

MCSCF gradient and Hessian

 

Hij,kl
(oo) = 0 ˆ E ij

- ˆ E kl
- ˆ H 0 + 0 ˆ H ̂  E ij

- ˆ E kl
- 0 - 2 0 ˆ E ij

- ˆ H ̂  E kl
- 0

 

HKL
(cc ) = 2 K ˆ H L -dKL 0 ˆ H 0( )

 

HK ,ij
(co) = Hij,K

(oc) = 2 K [ ˆ H , ˆ E ij
- 0

cc block

oo block

coupling block
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Number of elements in H for medium scale calculation 

MCSCF gradient and Hessian

• Assume: 200 orbitals, 20 occupied orbitals, 106 Slater determinates
• Number of orbital rotations: 20 × 200 = 4000

Hoo:   4000 × 4000 = 16×106 – not problematic
Hoc:   4000 × 106 = 4×109 – difficult to store
Hcc:   106 × 106 = 1012 – difficult to store

 

Hcc Hco

Hoc Hoo

æ 

è 
ç 

ö 

ø 
÷ 
S
T
æ 

è 
ç 

ö 

ø 
÷ = -

gc

go
æ 

è 
ç 

ö 

ø 
÷ 

Newton-Raphson equations in matrix form 

NOT POSSIBLE TO EXPLICITLY CONSTRUCT THE HESSIAN MATRIX
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g +Hp = 0

 

Hp = -g



1s(a1)

2s(a1)

2pz(a1)
2px(b1)

4a1

2b2

1b1
3a1
1b2

2a1

1a1

2py(b2)
1sA+1sB(a1)
1sA-1sB(b2)

O HA+HB

O

HB HA

y

z

MCSCF Calculation for Dissociation of H2O
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MCSCF Calculation for Dissociation of H2O

Dissociation of H2O into atomic fragments: O (3P) and H (2S).

Configuration in equilibrium region: 1a1
22a1

21b2
23a1

21b1
2

Active spaces (A1, A2, B1, B2) : 

(2,0,0,2): 3a1, 1b2, 4a1, 2b2 MOs needed to describe the breaking of 

the two OH bonds, four electron in four active orbitals. 

This active space is confirmed by the FCI occupation numbers.

(2,0,1,2): insert the 2px lone-pair orbital (B1) to have all degenerate 

2p orbitals in active space, to ensure the symmetry-correct 

dissociation of the water.

(3,0,1,2): valence active space, 2s orbital excepted to interact quite 

strongly with 2p.  
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1s(a1)

2s(a1)

2pz(a1)
2px(b1)

4a1

2b2

1b1
3a1
1b2

2a1

1a1

2py(b2)
1sA+1sB(a1)
1sA-1sB(b2)

O HA+HB

O

HB HA

y

z
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The Electronic Ground State of the Water Molecule

R=Rref R=2Rref R=2.5Rref R=8Rref

WHF 0.941 0.589 0.337 0.000

aη(1a1)
bη(1a1)
η(2a1)
η(2a1)
η(3a1)
η(3a1)
η(4a1)
η(4a1)

1.9999
2.0000
1.9837
1.9991
1.9836
1.9780
0.0278
0.0235

1.9999
2.0000
1.9801
1.9990
1.5538
1.5162
0.4434
0.4866

1.9999
2.0000
1.9806
1.9998
1.2270
1.2053
0.7680
0.7948

1.9999
2.0000
1.9810
2.0000
1.0000
1.0000
0.9949
1.0000

η(1b1)
η(1b1)

1.9714
1.9994

1.9739
1.9995

1.9758
1.9999

1.9765
2.0000

η(1b2)
η(1b2)
η(2b2)
η(2b2)

1.9609
1.9768
0.0290
0.0232

1.6242
1.5840
0.3689
0.4147

1.2995
1.2715
0.6957
0.7286

1.0000
1.0000
0.9949
1.0000

cc-pVDZ natural orbital occupation numbers of the aFCI and bCASSCF (3,0,1,2) wavefunction

38



MCSCF Calculation for Dissociation of H2O

Potential energy curve of the valence CAS (3,0,1,2) and FCI wave 
function, and the difference between CAS and FCI energies. 

at Rref about 25% of correlation energy recover (not consider
dynamic correlation)
at 2Rref, about 63% of correlation energy recover, (consider static
correlation)
the CAS error decreases somewhat at large distance, since there are
fewer electrons to correlate in dissociation limit.

CASSCF

FCI
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MRCI Calculation for Dissociation of H2O

Multi-reference single and double CI (MRSDCI) potential energy curve.   

By combining the truncated CI with MR, we get wave function which 
provide accurate approximation to FCI in all internuclear distances.  

MRSDCI error is about 40 
times smaller than CAS.

CAS weight is almost constant 
across the surface.

MRSDCI (MRCI)

FCI

R=Rref R=2Rref

E-EFCI W E-EFCI W
RHF 0.217822 0.941 0.363954 0.589

CAS(3,0,1,2) 0.164025 0.962 0.133568 0.967

MRSDCI 0.004425 - 0.003208 -
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MCSCF Calculations on Excited State

INTERESTING CHALLENGE FOR THE MCSCF TECHNIQUE

Multi-reference CI (MRCI):
Multi-reference CI method including all single and double excitations 
with respect to a given set of reference states. 

Accurate results can normally be obtained at least for the 
excitation energies.

 

FMR-CISD = ¢ c ¢ F + ¢ ¢ c ¢ ¢ F + ¢ c i
a ¢ F i

a

ia
å + ¢ ¢ c i

a ¢ ¢ F i
a

ia
å

+ ¢ c ij
ab ¢ F ij

ab

i> j a>b
å + ¢ ¢ c ij

ab ¢ ¢ F ij
ab

i> j a>b
å
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1. large near-degeneracy effects of the excited states in the
wave function: MCSCF treatment is necessary.

2. Different electronic states have in many cases differently
shaped orbitals: error of using common set cannot recover
by MRCI.

3. A well optimized wave function is important for the
calculation of transition properties: specific calculation of
orbitals more important than extensive inclusion of
correlation.

4. Cannot easily extended to large system: MRCI expansion
becomes excessively large.

Calculations on states that are not the lowest of their spin 
and spatial symmetry are more difficult ... 

Several difficulties connected with it:
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In order to compute excitation energies, transition moments,
relative PES etc. it is required that all states involved are orthogonal.

Two possibilities:
1. choose state-selective MOs and orthonormalize the final wave

function before computing properties
2. choose one set of MOs for all states

MCSCF Theory for Several Electronic States

Important area application of the MCSCF theory is the simultaneously 
study of several electronic states

1. Separate optimization of the individual states
2. State averaging MCSCF theory
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State Averaging MCSCF Theory

Simultaneous optimization all the electronic states in a common
orbital basis.
Accomplish by introducing an energy function to which each
electronic state contributes with a weight factor.
Orbital not optimized separately for each state, but are instead
determined to minimize an average energy of all states.
The method provides directly a set of orthogonal, noninteracting
electronic state.

 

Eav = wI EI
I

M

å

 

I = CIi i
i
å

 

I J =dIJ

To achieve 
this goal

 

wI

Fixed numerical 
parameters, 
chosen based 
on physical 
consideration.
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State Averaging MCSCF Theory

The only change is the replacement of the single state density 
matrices with average matrices.

 

Eav = hij
˜ D ij

ij
å + gijkl

ijkl
å ˜ P ijkl

 

˜ D ij = wI Dij
I

I

M

å

 

˜ P ijkl = wI Pijkl

I

I

M

å

At least we have one set of orbitals and M CI wave function.

It is then possible the to identify the root of interest and start an
MCSCF calculations for that specific root.

The average orbitals are the good starting orbitals.
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State Averaging MCSCF Theory

If doing MCSCF calculations for the specific root 
two things will be happen:

If we are unlucky, A root flipping happen

If we are lucky, root will stay in the same position relative to the 
other roots.
We have a set of orbitals optimized specifically for this root and a 
wave function with optimized CI coefficients. 

The optimization of the orbitals for an
excited state leads to a reordering of the
solutions. for example we are looking for
the third root. Follow the MCSCF we
notice that the energy of third root
drops more than that of second root.

A

X

X

A

MOs optimized 
for X state

MOs optimized 
for A state
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Final Comments

• In the MCSCF and CI methods it is up to us to decide which set of 
determinants we consider sufficient for the description of the system.

• In the MCSCF unlike CI the molecular orbital coefficients are not 
fixed and modified in such a way as to have the total energy as low as 
possible.

•MCSCF model allows for a highly flexible description of the 
electronic system where both one-electron functions (the MOs) and 
the N-electron function (the configurations) may adapt to the physical 
situation.   

• the “black box” situation of HF and post-Hf applications has not yet 
been reached for the MCSCF theory.

• A development toward more automatic procedures are necessary if 
the MCSCF method is going to be widely used in chemistry.    
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