The Standard Models:
 Coupled-cluster theory

Zahra Jamshidi
Sharif University of Technology

4th Winter School
February 2024

Excitation operators

- The lack of size-extensivity of truncated Cl wave function arises from the linear parametrization $|\mathbf{C}\rangle=\sum_{i} C_{i}|i\rangle$.
- Instead of a linear expansion of the full n-electron wavefunction in terms of n-electron configurations, we will make a linear parameterization of the change in a m-orbital multiplet due to m-body correlation.
m-body excitation operators:

$$
\hat{\tau}_{I}^{A}|H F\rangle=C_{I}^{A} a_{A}^{+} a_{I}|H F\rangle \quad \hat{\tau}_{I J}^{A B}|H F\rangle=C_{I J}^{A B} a_{A}^{+} a_{B}^{+} a_{I} a_{J}|H F\rangle
$$

$\widehat{\tau}_{I J K}^{A B C}$: performs the m orbital replacement from IJK to ABC , and the general form of this operator is $\hat{\tau}_{\mu}$

$$
|\mathbf{F C I}\rangle=\left(1+\sum_{A I} \widehat{\tau}_{I}^{A}+\sum_{A>B, I>J} \widehat{\tau}_{I J}^{A B}+\cdots\right)|H F\rangle
$$

Excitation operators

Exercise: Show

$$
\begin{aligned}
& \left.\left.\left.\hat{\tau}_{i}^{a}|0\rangle=\left|\begin{array}{l}
a \\
i
\end{array}\right\rangle,\left.\quad \hat{\tau}_{i}^{a}\right|_{j} ^{b}\right\rangle=\left|\begin{array}{l}
a b \\
i j
\end{array}\right\rangle,\left.\quad \hat{\tau}_{i}^{b}\right|_{i} ^{a}\right\rangle=0,\left.\quad \hat{\tau}_{j}^{a}\right|_{i} ^{a}\right\rangle=0 \\
& {\left[\hat{\tau}_{\mu}, \hat{\tau}_{\nu}\right]=0} \\
& \hat{\tau}_{\mu}^{2}=0
\end{aligned}
$$

Coupled-cluster wavefunction

- Try to overcome the main problem of configuration interaction by non-linear and separable parametrization of the correlated electronic state.
- For coupled-cluster wavefunction, all m-body correlation processes can happen simultaneously rather than one by one.

$$
|\mathbf{C C}\rangle=\left[\prod_{A I}\left(1+\hat{\tau}_{I}^{A}\right)\right]\left[\prod_{A>B, I>J}\left(1+\widehat{\tau}_{I J}^{A B}\right)\right] \cdots|H F\rangle
$$

These two wave functions are entirely equivalent if all excitations are included, differing only in their parametrization.

$$
\left(1+\hat{X}_{I J}^{A B}\right)|0\rangle=|0\rangle+C_{I J}^{A B} a_{A}^{\dagger} a_{B}^{\dagger} a_{I} a_{J}|0\rangle
$$

Each operator produces the superposition of the original state and the correction term represents the excitation from the original state.

Quadruply excited relative to HF state: $\quad\left|\begin{array}{c}A B C D \\ I J K L\end{array}\right\rangle=a_{A}^{\dagger} a_{B}^{\dagger} a_{C}^{\dagger} a_{D}^{\dagger} a_{l} a_{J} a_{K} a_{L}|\mathrm{HF}\rangle$

Apply single quadruple operator:

$$
\left(1+\hat{X}_{I J K L}^{A B C D}\right)|\mathrm{HF}\rangle=|\mathrm{HF}\rangle+C_{I J K L}^{A B C D}\left|\begin{array}{c}
A B C D \\
I J K L
\end{array}\right\rangle
$$

The results of two independent interaction:

$$
\left(1+\hat{X}_{I J}^{A B}\right)\left(1+\hat{X}_{K L}^{C D}\right)|\mathrm{HF}\rangle=|\mathrm{HF}\rangle+C_{I J}^{A B}\left|\begin{array}{c}
A B \\
I J
\end{array}\right\rangle+C_{K L}^{C D}\left|\begin{array}{c}
C D \\
K L
\end{array}\right\rangle+C_{I J}^{A B} C_{K L}^{C D}\left|\begin{array}{c}
A B C D \\
I J K L
\end{array}\right\rangle
$$

Coupled-cluster Theory

Since $\quad \hat{\tau}_{I J}^{A B} \widehat{\tau}_{I J}^{A B}=0$

$$
1+\hat{\tau}_{I J}^{A B}=1+\hat{\tau}_{I J}^{A B}+\frac{1}{2} \hat{\tau}_{I J}^{A B} \hat{\tau}_{I J}^{A B}+\cdots=\exp \left(\widehat{\tau}_{I J}^{A B}\right)
$$

The exponential ansatz of coupled-cluster theory is opportune and guarantee the sizeextensivity of the solution.

$$
\begin{aligned}
& |\mathbf{C C}\rangle=\exp \left(\sum_{A I} t_{I}^{A} a_{A}^{+} a_{I}+\sum_{A>B, I>I} t_{I J}^{A B} a_{A}^{+} a_{B}^{+} a_{I} a_{J}+\cdots\right)|\mathbf{H F}\rangle \\
& |\mathbf{C C}\rangle=\exp (\widehat{T})|\mathbf{H F}\rangle
\end{aligned}
$$

where the cluster operator

$$
\widehat{T}=\sum_{\mu} t_{\mu} \hat{\tau}_{\mu}
$$

Cluster Operator

$$
\widehat{T}=\widehat{T}_{1}+\widehat{T}_{2}+\widehat{T}_{3} \cdots
$$

If all excitations are included in \widehat{T}, the CC wavefunction is identical to the Cl wavefunction.
$\widehat{T}_{1}=\sum_{A I} t_{I}^{A} a_{A}^{+} a_{I}=\sum_{A I} t_{I}^{A} \hat{\tau}_{I}^{A} \quad$ Parameterises the correlation induced orbital relaxation.
$\widehat{T}_{2}=\sum_{A>B, I>J} t_{I J}^{A B} a_{A}^{+} a_{B}^{+} a_{I} a_{J}=\frac{1}{4} \sum_{A, B, I, J} t_{I J}^{A B} a_{A}^{+} a_{B}^{+} a_{I} a_{J}=\frac{1}{4} \sum_{A, B, I J} t_{I J}^{A B} \widehat{\tau}_{I J}^{A B} \quad$ Parameterises two-body correlation
$t_{I}^{A}, t_{I J}^{A B}, \ldots$
Cluster amplitudes

The correspondence between the CC operators \widehat{T}_{i} and the Cl operators \widehat{C}_{i} :

$$
\begin{aligned}
& \qquad|\mathbf{F C I}\rangle=\left(1+\sum_{A I} \hat{\tau}_{I}^{A}+\sum_{A>B, I>J} \hat{\tau}_{I J}^{A B}+\cdots\right)|H F\rangle \\
& \exp (\widehat{T})|\mathbf{H F}\rangle=\sum_{i=0}^{N} \widehat{C}_{i}|\mathbf{H F}\rangle \\
& \hat{C}_{0}=1 \\
& \hat{C}_{1}=\hat{T}_{1} \\
& \hat{C}_{2}=\hat{T}_{2}+\frac{1}{2} \hat{T}_{1}^{2} \\
& \hat{C}_{3}=\hat{T}_{3}+\hat{T}_{1} \hat{T}_{2}+\frac{1}{6} \hat{T}_{1}^{3} \\
& \hat{C}_{4}=\hat{T}_{4}+\hat{T}_{1} \hat{T}_{3}+\frac{1}{2} \hat{T}_{2}^{2}+\frac{1}{2} \hat{T}_{1}^{2} \hat{T}_{2}+\frac{1}{24} \hat{T}_{1}^{4}
\end{aligned}
$$

The CC amplitudes decay much more quickly with excitation rank than the CI coefficients.

Coupled-cluster Hierarchy of Excitation Levels

The coupled-cluster wave function as a product of correlating operators working on HF state:

$$
\begin{aligned}
|\mathbf{C C}\rangle & =\exp (\widehat{T})|\mathbf{H F}\rangle \\
|\mathbf{C C}\rangle & =\left(1+\widehat{T}+\frac{1}{2} \widehat{T}^{2}+\frac{1}{6} \widehat{T}^{3}+\cdots\right)|\mathbf{H F}\rangle \quad \widehat{T}=\widehat{T}_{1}+\widehat{T}_{2}+\cdots
\end{aligned}
$$

CCSD wave function, for instance, contains contributions from triple and higher excitations as products of lower-order excitations:

$$
\begin{aligned}
|\mathbf{C C S D}\rangle=|\mathbf{H F}\rangle+ & \widehat{T}_{1}|\mathbf{H F}\rangle+\left(\frac{1}{2} \widehat{T}_{1}^{2}+\widehat{T}_{2}\right)|\mathbf{H F}\rangle+\left(\frac{1}{6} \widehat{T}_{1}^{3}+\widehat{T}_{1} \widehat{T}_{2}\right)|\mathbf{H F}\rangle+\cdots \\
& +\left(\frac{1}{2} \widehat{T}_{2}^{2}+\frac{1}{2} \widehat{T}_{2} \widehat{T}_{1}^{2}+\frac{1}{24} \widehat{T}_{1}^{4}\right)|\mathbf{H F}\rangle+\cdots
\end{aligned}
$$

Truncated coupled-cluster

-The advantages of the cluster parametrization become apparent only upon truncation.

- At the truncated level, the coupled-cluster state contains contributions from all determinants in the FCl wave function.

Water molecule in the cc-pVDZ basis.

	$R_{\text {ref }}$			$2 R_{\text {ref }}$	
Excitation level	CCSD	FCI		CCSD	FCI
0	0.94410	0.94100		0.65114	0.58966
1	0.00056	0.00053		0.02494	0.02680
2	0.05413	0.05650		0.28762	0.33300
3	0.00002	0.00055		0.00371	0.01040
4	0.00115	0.00137		0.03225	0.03970
5	0.00000	0.00002		0.00006	0.00080
6	0.00001	0.00002		0.00028	0.00044

-CCSD recovers 95\% of the FCI singles and doubles weight.
-CCSD recovers 84% of the FCl quadruple weight.

- CCSD recovers 4\% of the triple excitations weight.
- At $2 R$, the single-determinant state is not a good approximation.
- At 2R, CCSD recovers 14% of the FCl doubles weight.
-For high accuracy, connected triple excitations should consider.

Coupled-cluster Schrödinger equation

Given the product ansatz for coupled cluster and consider the optimization of CC wavefunction:

CI wavefunction minimize with respect to linear expectation coefficients:

$$
E_{C I}=\min _{C_{\mu} \rightarrow 0} \frac{\langle C I| \widehat{H}|C I\rangle}{\langle C I \mid C I\rangle}
$$

CC wavefunction minimize with respect to amplitudes:

$$
E_{\min }=\min _{t_{\mu} \rightarrow 0} \frac{\langle C C| \widehat{H}|C C\rangle}{\langle C C \mid C C\rangle}
$$

Coupled-cluster Schrödinger equation

Derivative of CI wavefunction with respect to variational parameters:
Give rise to a standard eigenvalue problem for CI coefficients:

Nonlinear parametrization of CC wavefunction, and complicated derivative of CC state:

$$
\begin{gathered}
\frac{\partial}{\partial C_{\mu}}|\mathbf{C I}\rangle=|\mu\rangle \\
\langle\mu| \widehat{H}|C I\rangle=E_{C I}\langle\mu \mid C I\rangle \\
\frac{\partial}{\partial C_{\mu}}|\mathbf{C C}\rangle=\left[\prod_{v}\left(1+t_{\nu} \hat{\tau}_{\nu}\right)\right]|\mu\rangle
\end{gathered}
$$

Give rise to intractable set of nonlinear equation for CC amplitude :
Involves full set of FCl
determinants and higher order products of amplitudes.

$$
\langle\mu|\left[\prod_{\nu}\left(1+t_{\nu} \hat{\tau}_{\nu}^{\dagger}\right)\right] \hat{H}|\mathrm{CC}\rangle=E_{\min }\langle\mu|\left[\prod_{\nu}\left(1+t_{\nu} \hat{\tau}_{\nu}^{\dagger}\right)\right]|\mathrm{CC}\rangle
$$

Projected coupled-cluster equation

- For the linear CI wave function, the variational minimization of the energy is entirely equivalent to the solution of the projected Schrodinger equation
- For nonlinearly parametrized CC wave functions, the solution of the projected Schrodinger equation is, in general, not equivalent to the minimization of the energy.
- For CC wave function solution of the projected Schrodinger equation as an alternative to the minimization of the energy.
- In particular, applied to the coupled-cluster model, projection of the Schrodinger equation against those determinants that enter the coupled-cluster state with connected amplitudes.

$$
\langle\mu|=\langle\mathbf{H F}| \hat{\tau}_{\mu}^{+}
$$

The projected CC equations:

$$
\langle\mu| \widehat{H}|\mathbf{C C}\rangle=E\langle\mu \mid \mathbf{C C}\rangle \quad\langle\mu|=\langle\mathbf{H F}| \hat{\tau}_{\mu}^{+}
$$

The coupled-cluster energy is obtained by projection against the HF state

$$
\begin{aligned}
& \langle\mathbf{H F}| \widehat{H}|\mathbf{C C}\rangle=E\langle\mathbf{H F} \mid \mathbf{C C}\rangle \quad\langle\mathbf{H F} \mid \mathbf{C C}\rangle=1 \\
& \langle\mathbf{H F}| \widehat{H}|\mathbf{C C}\rangle=E
\end{aligned}
$$

Unlike the variational conditions, the expansion of the wave function terminates after a few terms, higher than double excitations.

CCSD dissociation energy of water for fix angle:

Projection:

$$
\langle\mathbf{H F}| \widehat{H}|\mathbf{C C S D}\rangle=E
$$

Expectation:

$$
E_{\text {ave }}=\frac{\langle C C S D| \widehat{H}|C C S D\rangle}{\langle C C S D \mid C C S D\rangle}
$$

Small difference between the energy calculated as an expectation value and by projection.

More complicated variational expression for the expectation formula does not improve energy.

Projected coupled-cluster equation

Full coupled-cluster wavefunction satisfies Schrödinger equation:

$$
\widehat{H} e^{\hat{T}}|\mathbf{H F}\rangle=E e^{\hat{T}}|\mathbf{H F}\rangle \quad|\mathbf{C C}\rangle=e^{\hat{T}}|\mathbf{H F}\rangle
$$

Truncated coupled-cluster wavefunction cannot satisfy this equation exactly. Projected coupled equation:

$$
\begin{aligned}
& \langle\mathbf{H F}| \widehat{H} e^{\widehat{T}}|\mathbf{H F}\rangle=E \\
& \langle\mu| \widehat{H} e^{\hat{T}}|\mathbf{H F}\rangle=E\langle\mu| e^{\widehat{T}}|\mathbf{H F}\rangle
\end{aligned}
$$

Projected coupled-cluster equation

$$
\begin{gathered}
\widehat{H} e^{\hat{T}}|\mathbf{H F}\rangle=E e^{\widehat{T}}|\mathbf{H F}\rangle \quad \text { multiply from left } \quad e^{-\widehat{T}} \\
e^{-\widehat{T}} \widehat{H} e^{\widehat{T}}|\mathbf{H F}\rangle=E|\mathbf{H F}\rangle \quad\langle\mathbf{H F}| e^{-\widehat{T}} \widehat{H} e^{\widehat{T}}|\mathbf{H F}\rangle=E \\
\langle\mathbf{H F}| e^{-\widehat{T}} \widehat{H} e^{\hat{T}}|\mathbf{H F}\rangle=E\langle\mathbf{H F} \mid \mathbf{H F}\rangle \quad\langle\mathbf{H F}| e^{-\widehat{T}}=\langle\mathbf{H F}| \\
\langle\mu| \widehat{H} e^{\widehat{T}}|\mathbf{H F}\rangle=E\langle\mu| e^{\widehat{T}}|\mathbf{H F}\rangle \quad \text { multiply from left } \quad e^{-\widehat{T}} \\
\langle\mu| e^{-\hat{T}} \widehat{H} e^{\hat{T}}|\mathbf{H F}\rangle=E\langle\mu| e^{-\widehat{T}} e^{\hat{T}}|\mathbf{H F}\rangle=E\langle\mu \mid \mathbf{H F}\rangle=0 \quad\langle\mu| e^{-\widehat{T}} \widehat{H} e^{\widehat{T}}|\mathbf{H F}\rangle=0
\end{gathered}
$$

Project onto the Hartree-Fock reference to obtain the energy:

$$
\langle\mathbf{H F}| e^{-\widehat{T}} \widehat{H} e^{\widehat{T}}|\mathbf{H F}\rangle=E
$$

Project onto excited determinants to obtain the equations for the amplitudes:

$$
\langle\mu| e^{-\widehat{T}} \widehat{H} e^{\widehat{T}}|\mathbf{H F}\rangle=0
$$

Similarity transformation yields the Cambell-Baker-Hausdorff expansion:

$$
\begin{gathered}
\widetilde{H}=e^{-\hat{T}} \widehat{H} e^{\hat{T}} \\
\tilde{H}=\hat{H}+[\hat{H}, \hat{T}]+\frac{1}{2}[[\hat{H}, \hat{T}], \hat{T}]+\frac{1}{6}[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}]+\frac{1}{24}[[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}], \hat{T}]
\end{gathered}
$$

\widehat{H} is a two-body operator and the amplitude equations are therefore coupled fourth order polynomials.

The coupled cluster energy

$$
E=\langle\mathbf{H F}| e^{-\hat{T}} \widehat{H} e^{\widehat{T}}|\mathbf{H F}\rangle=\langle\mathbf{H F}| \widehat{H} e^{\widehat{T}}|\mathbf{H F}\rangle
$$

Expanding the cluster amplitudes, we obtain:

$$
E=\langle\mathbf{H F}| \widehat{H}\left(1+\widehat{T}+\frac{1}{2} \widehat{T}^{2}+\ldots\right)|\mathbf{H F}\rangle=\langle\mathbf{H F}| \widehat{H}\left(1+\widehat{T}_{2}+\frac{1}{2} \widehat{T}_{1}^{2}\right)|\mathbf{H F}\rangle
$$

Cluster operators higher than doubles do not contribute to the energy since \widehat{H} is a two-particle operator.
Because of the Brillouin theorem, the one-particle operators contribute only to second-order:

$$
\langle\mathbf{H F}| \widehat{H} \widehat{T}_{1}|\mathbf{H F}\rangle=0
$$

Only singles and doubles amplitudes contribute directly to the coupled-cluster energy. The higherorder excitations contribute indirectly since all amplitudes are coupled by the projected equations.

The coupled cluster amplitude equations

$$
\begin{gathered}
\langle\mu| e^{-\hat{T}} \widehat{H} e^{\widehat{T}}|\mathbf{H F}\rangle=0 \\
\tilde{H}=\hat{H}+[\hat{H}, \hat{T}]+\frac{1}{2}[[\hat{H}, \hat{T}], \hat{T}]+\frac{1}{6}[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}]+\frac{1}{24}[[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}], \hat{T}]
\end{gathered}
$$

The expressions for the CCSD amplitude equations:

$$
\begin{array}{|rr|}
\hline \begin{aligned}
&\left\langle\mu_{1}\right| \hat{H}|\mathrm{HF}\rangle+\left\langle\mu_{1}\right|\left[\hat{H}, \hat{T}_{1}\right]|\mathrm{HF}\rangle+\left\langle\mu_{1}\right|\left[\hat{H}, \hat{T}_{2}\right]|\mathrm{HF}\rangle+\frac{1}{2}\left\langle\mu_{1}\right|\left[\left[\hat{H}, \hat{T}_{1}\right], \hat{T}_{1}\right]|\mathrm{HF}\rangle \\
&+\left\langle\mu_{1}\right|\left[\left[\hat{H}, \hat{T}_{1}\right], \hat{T}_{2}\right]|\mathrm{HF}\rangle+\frac{1}{6}\left\langle\mu_{1}\right|\left[\left[\left[\hat{H}, \hat{T}_{1}\right], \hat{T}_{1}\right], \hat{T}_{1}\right]|\mathrm{HF}\rangle=0
\end{aligned} & \mu_{1}=\Phi_{i}^{a} \\
\cline { 1 - 1 }\left\langle\mu_{2}\right| \hat{H}|\mathrm{HF}\rangle+\left\langle\mu_{2}\right|\left[\hat{H}, \hat{T}_{1}\right]|\mathrm{HF}\rangle+\left\langle\mu_{2}\right|\left[\hat{H}, \hat{T}_{2}\right]|\mathrm{HF}\rangle+\frac{1}{2}\left\langle\mu_{2}\right|\left[\left[\hat{H}, \hat{T}_{1}\right], \hat{T}_{1}\right]|\mathrm{HF}\rangle \\
& +\left\langle\mu_{2}\right|\left[\left[\hat{H}, \hat{T}_{1}\right], \hat{T}_{2}\right]|\mathrm{HF}\rangle+\frac{1}{2}\left\langle\mu_{2}\right|\left[\left[\hat{H}, \hat{T}_{2}\right], \hat{T}_{2}\right]|\mathrm{HF}\rangle \\
\quad+\frac{1}{6}\left\langle\mu_{2}\right|\left[\left[\left[\hat{H}, \hat{T}_{1}\right], \hat{T}_{1}\right], \hat{T}_{1}\right]|\mathrm{HF}\rangle+\frac{1}{2}\left\langle\mu_{2}\right|\left[\left[\left[\hat{H}, \hat{T}_{1}\right], \hat{T}_{1}\right], \hat{T}_{2}\right]|\mathrm{HF}\rangle & \\
\quad+\frac{1}{24}\left\langle\mu_{2}\right|\left[\left[\left[\left[\left[\hat{H}, \hat{T}_{1}\right], \hat{T}_{1}\right], \hat{T}_{1}\right], \hat{T}_{1}\right]|\mathrm{HF}\rangle=0\right. & \\
\hline
\end{array}
$$

Size-consistency

Sum of separate calculations on each fragment

A single calculation on both fragments: "supermolecule"

For this property to hold, the wave function must be multiplicatively separable:

$$
\left|\Psi^{A B}\right\rangle=\mathcal{A}\left|\Psi^{A}\right\rangle\left|\Psi^{B}\right\rangle
$$

Size-consistency

The "configuration interaction doubles" (CID) wave function, in which only linear terms in the cluster expansion are retained, is exact in this case.

Size-consistency

CID does not include this term and thus is not size consistent.

Size-consistency

CCD gives a multiplicatively separable wave function and thus is size consistent.

Size-consistency

