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Excitation operators

- The lack of size-extensivity of truncated Cl wave function arises from the linear
parametrization |C) = )’ G|i).

- Instead of a linear expansion of the full n-electron wavefunction in terms of n-electron
configurations, we will make a linear parameterization of the change in a m-orbital
multiplet due to m-body correlation.

m-body excitation operators:
TAVHF) = CAata,|H AAB|HF> = CAB,tqt |H )
77| ) IaAa[| F) T 1 4, dpad; F

74BC: performs the m orbital replacement from IJK to ABC, and the general form of this operator is 7

Tk - u

IFCI) = [1+ ) 27+ ) 24+ ||HF)
Al A>B,I>J]
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Excitation operators

Exercise: Show
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Coupled-cluster wavefunction

- Try to overcome the main problem of configuration interaction by non-linear and
separable parametrization of the correlated electronic state.

- For coupled-cluster wavefunction, all m-body correlation processes can happen
simultaneously rather than one by one.

|CC) = [H(H?;‘)] [T a+2|-1uF)
Al

A>B,I>J

These two wave functions are entirely equivalent if all excitations are included, differing
only in their parametrization.



(1 + X48)/0) = 10) 4+ C18dl a}asa,|0)

Each operator produces the superposition of the original state and the correction term

represents the excitation from the original state.

Quadruply excited relative to HF state:

ABCD
‘ IJKL > — ZazazagalaJaKaL|HF)

Apply single quadruple operator: (1+ ?f,f,f)ﬂHF) = |HF) + C‘}‘f,g,f)

ABCD
[JKL

The results of two independent interaction:

L+ X)) + XD)HF) = [HF) + C}7
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Coupled-cluster Theory

: ~AB~AB _
Since 75,7t =0
1
~AB _ ~AB | — ~AB2AB L ~AB
I+ 77 =1+7"+ > T Ty e =exp(Ty;

The exponential ansatz of coupled-cluster theory is opportune and guarantee the size-
extensivity of the solution.

| CC) = exp ZtIAaXaI+ Z tiPatataa, + - | |HF)
Al A>BI>J

| CC) = exp(T) | HF)

where the cluster operator 7 _ Z L, %\M
)2
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Cluster Operator

T= ?1"‘ ?2"‘ ?3"'

If all excitations are included in 7, the CC wavefunction is identical to the Cl wavefunction.

T,= Z tIAa;aI = Z tIA’T\? Parameterises the correlation induced orbital relaxation.
Al Al
T, = " Batataa, = ! " Batataa, = ! tABTAB : :
2 = 1 SATBHINT Ty 1 SATBEINT Ty 1J ‘17 Parameterises two-body correlation
A>B.I>J ABIJ AB.IJ
/A (AB _
1> Cluster amplitudes



The correspondence between the CC operators 7. and the Cl operators C ;:

l

IFCI) = [1+ ) 27+ Y 724+ ||HF)

A>B.,I>J

N
exp(T)|HF) =}’ C; |HF)

i=0
X T3 = independent interactions within two distinct pairs
Co=1
é ? T, = simultaneous interaction of four electrons
1= 1]

Cy=Ts+T\T, + 1T3

Cy= T4+T1Tz+ T2+ T2T2+914T4

The CC amplitudes decay much more quickly with excitation rank than the Cl coefficients.



Coupled-cluster Hierarchy of Excitation Levels

The coupled-cluster wave function as a product of correlating operators working on HF state:

|CC) = exp(T) | HF)

|CC)=(1+T+5T +gT + ---) | HF) T=T+T,+ -

CCSD wave function, for instance, contains contributions from triple and higher excitations as
products of lower-order excitations:

| CCSD) = |HF) + T, | HF) +(5T§+ T,) | HF) +(ET?+ T,T,)|HF) + ---
+(=T24+=T,T°+—TH|HF) + ---
Gty LT+ TOIHE)
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Truncated coupled-cluster

e The advantages of the cluster parametrization become apparent only upon truncation.
e At the truncated level, the coupled-cluster state contains contributions from all
determinants in the FCl wave function.

Water molecule in the cc-pVDZ basis.

chf 2Rref
Excitation level CCSD FCI CCSD FCI
0 0.94410 0.94100 0.65114 0.58966
1 0.00056 0.00053 0.02494 0.02680
2 0.05413 0.05650 0.28762 0.33300
3 0.00002 0.00055 0.00371 0.01040
4 0.00115 0.00137 0.03225 0.03970
5 0.00000 0.00002 0.00006 0.00080
6 0.00001 0.00002 0.00028 0.00044
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e CCSD recovers 95% of the FCl singles and
doubles weight.

e CCSD recovers 84% of the FCI quadruple
weight.

¢ CCSD recovers 4% of the triple
excitations weight.

e At 2R, the single-determinant state is
not a good approximation.

e At 2R, CCSD recovers 14% of the FCI
doubles weight.

eFor high accuracy, connected triple
excitations should consider.



Coupled-cluster Schrédinger equation

Given the product ansatz for coupled cluster and consider the optimization of CC

wavefunction:

CI wavefunction minimize with respect to linear

expectation coefficients:

CC wavefunction minimize with respect to

amplitudes:

<CI‘ ﬁ‘ CI>

= min
‘o (CI|C

<Cc‘ﬁ‘ CC>
E . = min

min = 20 {(CC|CC)

U



Coupled-cluster Schrédinger equation

0
Derivative of CI wavefunction with respect to FYeh |CI) = | u)
u

variational parameters:

Give rise to a standard eigenvalue problem for <M ‘ H ‘ CI> = Ecu|CI)

CI coefficients:

Nonlinear parametrization of CC wavefunction, = |CC) = [H(l n tyr,)] | 0)
and complicated derivative of CC state: p v

Give rise to intractable set of nonlinear equation for CC amplitude :

Involves full set of FCI .
(1] [H(l +1,%)) ICC)
y

H|CC) = Emin{1| [H(l +1,7))

determinants and higher order
products of amplitudes. .




Projected coupled-cluster equation

* For the linear Cl wave function, the variational minimization of the energy is
entirely equivalent to the solution of the projected Schrodinger equation

* For nonlinearly parametrized CC wave functions, the solution of the projected
Schrodinger equation is, in general, not equivalent to the minimization of the
energy.

« For CC wave function solution of the projected Schrodinger equation as an
alternative to the minimization of the energy.

 In particular, applied to the coupled-cluster model, projection of the Schrodinger
equation against those determinants that enter the coupled-cluster state with
connected amplitudes.

(] = (HF| 7}
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The projected CC equations:

<u\ﬁ\CC>=E<u|CC> (u = (HF | 7}

The coupled-cluster energy is obtained by projection against the HF state

<HF ‘ ﬁ‘ cc> — E(HF | CC) (HF | CC) = 1

<HF‘1/LI\‘CC>:E

Unlike the variational conditions, the expansion of the wave function terminates
after a few terms, higher than double excitations.
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CCSD dissociation energy of water for fix angle:

Projection: Expectation: P
- CC&D‘IJ‘CC&D
HF‘I{‘CCSD _E

E
ave (CCSD | CCSD)

Small difference between the energy calculated as an expectation value and by projection.

Error relative to FCI

-756 | | Two energies are
essentially the same

0.020

~758 1 Projection

~76.0 0.010 }

=762 t

1 2 3 4 1 2 3 4

More complicated variational expression for the expectation formula does not improve energy. 15



Projected coupled-cluster equation

Full coupled-cluster wavefunction satisfies Schrodinger equation:

He' |HF) = Ee' |HF) |CC) = T |HF)
Truncated coupled-cluster wavefunction cannot satisfy this equation exactly.

Projected coupled equation:

<HF| ﬁe?|HF> —E

<M ‘ Hel HF> =E<,bt

A~

e

HF )
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Projected coupled-cluster equation

N\

Hel |HF) = EeT|HF)  multiply from left  ,—7

A A

e-TH T |HF) = E|HF) (HF|eTH el |HF) =

<HF|e—fﬁe?|HF> - E(HF|HF) (HF|¢™7 = (HF|

<,u ‘ HeT HF> =E<,Lt

<ﬂ|e—?ﬁe?|HF> =E<M|e—?e?|HF> — E(u|HF) = 0 <ﬂ|€_?ﬁ€?|HF> =0

eT

HF> multiply from left e !



Project onto the Hartree-Fock reference to obtain the energy:
<HF | e—fﬁef|HF> —E
Project onto excited determinants to obtain the equations for the amplitudes:

<M|e—?ﬁe?|HF> =0

Similarity transformation yields the Cambell-Baker-Hausdorff expansion:

~— Fas

H=eTHe!
S ! N S A N P S

H is a two-body operator and the amplitude equations are therefore coupled fourth order
polynomials.
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The coupled cluster energy

E= <HF|e—fﬁef|HF> _ <HF| ﬁef|HF>

Expanding the cluster amplitudes, we obtain:
E= <HF| H(+ T+5T2+...)|HF> = <HF| H(l+ T2+5T%)|HF>

Cluster operators higher than doubles do not contribute to the energy since H is a two-particle operator.

Because of the Brillouin theorem, the one-particle operators o~
contribute only to second-order: <HF| HT, |HF> =0

Only singles and doubles amplitudes contribute directly to the coupled-cluster energy. The higher-
order excitations contribute indirectly since all amplitudes are coupled by the projected equations.
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The coupled cluster amplitude equations

<,u | e‘fﬁe?|HF> =0

B = B+ (A7) + 1A, T, + (8,728 + o ([, 7,7, 7,7

The expressions for the CCSD amplitude equations:

(i |HIHF) + (o |[H, THF) + (4 |[H, T21HF) + L (u[[H, T1], T11[HF)

+ (A, T11, T21HF) + (i l[[[A, T11, T1]. T,]HF) = 0

(2| HIHF) + (ua|[H, T11[HF) + (u2|[H, T2HF) + (uo|[[H, T1], T1]HF)
+ (p2ll[H, T11, T21HF) + L (u2|[[H, T2, T>]/HF)
+ LnllllH, T11, T11, T11HF) + Y (uol[ILH, T11, T1], T2]1/HF)

+ L llIIH, T11, T11, T11, T11HF) = 0

i

— Pab
o = D@
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Size-consistency

A |

‘ Sum of separate calculations on

) i ) each fragment

Ep

t

EA
{ = \ { A single calculation on both

fragments: “supermolecule”

For this property to hold, the wave function must be multiplicatively separable:

T4B) = A|T4)|05)
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Size-consistency

{ E et b
o I

: | @o) | @5

@) oxact = [¥)or = (1+75) |27)

The "configuration interaction doubles” (CID) wave function, in which only linear terms in
the cluster expansion are retained, is exact in this case.

22



Size-consistency

A TR k=B
EAB

| @) | ©F) | @)

Oyat, = A{ (1+7%) 198) x (1+77) |2F)]

3 (1 L TALTB L T;‘Tf) BAB)

Z (1 +TA + TB)Y |®AB)

= |1)én

CID does not include this term and thus is not size consistent.

=

ab
|02)
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Size-consistency
= 4

e A :
| ®y) |<I)‘.’.b

s =
T B ——
| @) | @5

™A B
0)48p = A{e™ |0g) x ' |0f) }
~A B
= 1 T |97 )
AB
|(I)CCD>
CCD gives a multiplicatively separable wave function and thus is size consistent.
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Size-consistency

e A \)T 4+ B —
| @) | @) Eysp | @) | @)

O)at. = A{ (1+75) 188) x (1+77) |2F) ]

= (1+ 0 + TP + TTF) |2 )

# (1+ 75+ T2) |2 )
= |0)CHD
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