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The Standard Models: 
Coupled-cluster theory



Excitation operators 
- The lack of size-extensivity of truncated CI wave function arises from the linear 

parametrization . 


- Instead of a linear expansion of the full n-electron wavefunction in terms of n-electron 
configurations, we will make a linear parameterization of the change in a m-orbital 
multiplet due to m-body correlation. 

|C⟩ = ∑
i

Ci | i⟩
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|FCI⟩ = 1 + ∑
AI

̂τ A
I + ∑

A>B,I>J

̂τ AB
IJ + ⋯ |HF⟩

̂τ A
I |HF⟩ = CA

I a+
A aI |HF⟩ ̂τ AB

IJ |HF⟩ = CAB
IJ a+

A a+
B aIaJ |HF⟩

m-body excitation operators: 

: performs the m orbital replacement from IJK to ABC, and the general form of this operator is  ̂τ ABC
IJK ̂τ μ



Exercise: Show 

Excitation operators 



Coupled-cluster wavefunction
- Try to overcome the main problem of configuration interaction by non-linear and 

separable parametrization of the correlated electronic state.


- For coupled-cluster wavefunction, all m-body correlation processes can happen 
simultaneously rather than one by one. 
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|CC⟩ = [∏
AI

(1 + ̂τ A
I )] ∏

A>B,I>J

(1 + ̂τ AB
IJ ) ⋯ |HF⟩

These two wave functions are entirely equivalent if all excitations are included, differing 
only in their parametrization. 



Each operator produces the superposition of the original state and the correction term 
represents the excitation from the original state. 

Quadruply excited relative to HF state:

Apply single quadruple operator:

The results of two independent interaction:
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Coupled-cluster Theory 

1 + ̂τ AB
IJ = 1 + ̂τ AB

IJ +
1
2

̂τ AB
IJ ̂τ AB

IJ + ⋯ = exp( ̂τ AB
IJ )

̂τ AB
IJ ̂τ AB

IJ = 0Since 

|CC⟩ = exp ∑
AI

tA
I a+

A aI + ∑
A>B,I>J

tAB
IJ a+

A a+
B aIaJ + ⋯ |HF⟩

|CC⟩ = exp( ̂T) |HF⟩

where the cluster operator 

The exponential ansatz of coupled-cluster theory is opportune and guarantee the size-
extensivity of the solution.
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̂T = ∑
μ

tμ ̂τ μ



̂T = ̂T1 + ̂T2 + ̂T3⋯

̂T1 = ∑
AI

tA
I a+

A aI = ∑
AI

tA
I ̂τ A

I

̂T2 = ∑
A>B,I>J

tAB
IJ a+

A a+
B aIaJ =

1
4 ∑

A,B,I,J

tAB
IJ a+

A a+
B aIaJ =

1
4 ∑

A,B,I,J

tAB
IJ ̂τ AB

IJ

tA
I , tAB

IJ , . . . Cluster amplitudes

Cluster Operator 

If all excitations are included in , the CC wavefunction is identical to the CI wavefunction. ̂T

Parameterises the correlation induced orbital relaxation. 

Parameterises two-body correlation 
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The correspondence between the CC operators  and the CI operators :̂Ti
̂C i

The CC amplitudes decay much more quickly with excitation rank than the CI coefficients. 

|FCI⟩ = 1 + ∑
AI

̂τ A
I + ∑

A>B,I>J

̂τ AB
IJ + ⋯ |HF⟩

exp( ̂T) |HF⟩ =
N

∑
i=0

̂Ci |HF⟩

 = independent interactions within two distinct pairs ̂T2
2

 = simultaneous interaction of four electrons ̂T4



Coupled-cluster Hierarchy of Excitation Levels

|CC⟩ = exp( ̂T) |HF⟩

The coupled-cluster wave function as a product of correlating operators  working on HF state:

|CC⟩ = (1 + ̂T +
1
2

̂T2 +
1
6

̂T3 + ⋯) |HF⟩ ̂T = ̂T1 + ̂T2 + ⋯

|CCSD⟩ = |HF⟩ + ̂T1 |HF⟩ + (
1
2

̂T2
1 + ̂T2) |HF⟩ + (

1
6

̂T3
1 + ̂T1 ̂T2) |HF⟩ + ⋯

+(
1
2

̂T2
2 +

1
2

̂T2 ̂T2
1 +

1
24

̂T4
1) |HF⟩ + ⋯

CCSD wave function, for instance, contains contributions from triple and higher excitations as 
products of lower-order excitations: 
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Truncated coupled-cluster
•The advantages of the cluster parametrization become apparent only upon truncation.

•At the truncated level, the coupled-cluster state contains contributions from all 
determinants in the FCI wave function.

•CCSD recovers 95% of the FCI singles and 
doubles weight.


•CCSD recovers 84% of the FCI quadruple 
weight.


•CCSD recovers 4% of the triple 
excitations weight.


•At 2R , the single-determinant state is 
not a good approximation. 


•At 2R, CCSD recovers 14% of the FCI 
doubles weight.


•For high accuracy, connected triple 
excitations should consider.

Water molecule in the cc-pVDZ basis.
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Coupled-cluster Schrödinger equation
Given the product ansatz for coupled cluster and consider the optimization of CC 
wavefunction:

ECI = min
Cμ→0

⟨CI ̂H CI⟩
⟨CI |CI⟩

Emin = min
tμ→0

⟨CC ̂H CC⟩
⟨CC |CC⟩

 wavefunction minimize with respect to linear 
expectation coefficients:
CI

 wavefunction minimize with respect to 
amplitudes:
CC



Coupled-cluster Schrödinger equation
Derivative of  wavefunction with respect to 
variational parameters:

CI

Nonlinear parametrization of  wavefunction, 
and complicated derivative of CC state:

CC

∂
∂Cμ

|CI⟩ = |μ⟩

⟨μ ̂H CI⟩ = ECI⟨μ |CI⟩Give rise to a standard eigenvalue problem for 
 coefficients:CI

∂
∂Cμ

|CC⟩ = [∏
υ

(1 + tν ̂τ ν)] |μ⟩

Give rise to intractable set of nonlinear equation for  amplitude :CC

Involves full set of FCI 
determinants and higher order 
products of amplitudes. 
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• For the linear CI wave function, the variational minimization of the energy is 
entirely equivalent to the solution of the projected Schrodinger equation 


• For nonlinearly parametrized CC wave functions, the solution of the projected 
Schrodinger equation is, in general, not equivalent to the minimization of the 
energy. 


• For CC wave function solution of the projected Schrodinger equation as an 
alternative to the minimization of the energy. 


• In particular, applied to the coupled-cluster model, projection of the Schrodinger 
equation against those determinants that enter the coupled-cluster state with 
connected amplitudes.

Projected coupled-cluster equation
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⟨μ | = ⟨HF | ̂τ +
μ



⟨μ | = ⟨HF | ̂τ +
μ⟨μ ̂H CC⟩ = E⟨μ |CC⟩

The projected CC equations:

The coupled-cluster energy is obtained by projection against the HF state 

⟨HF ̂H CC⟩ = E⟨HF |CC⟩

⟨HF ̂H CC⟩ = E

⟨HF |CC⟩ = 1

Unlike the variational conditions, the expansion of the wave function terminates 
after a few terms, higher than double excitations.
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Small difference between the energy calculated as an expectation value and by projection.

⟨HF ̂H CCSD⟩ = E
Eave =

⟨CCSD ̂H CCSD⟩
⟨CCSD |CCSD⟩

Two energies are 
essentially the same

Error relative to FCI

Expectation: Projection: 

Expectation 

Projection 

More complicated variational expression for the expectation formula does not improve energy. 15

CCSD dissociation energy of water for fix angle:



Projected coupled-cluster equation
Full coupled-cluster wavefunction satisfies Schrödinger equation:

̂H e ̂T |HF⟩ = Ee ̂T |HF⟩

Truncated coupled-cluster wavefunction cannot satisfy this equation exactly.

⟨μ ̂H e ̂T HF⟩ = E ⟨μ e ̂T HF⟩

|CC⟩ = e ̂T |HF⟩

⟨HF | ̂H e ̂T |HF⟩ = E

Projected coupled equation:
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̂H e ̂T |HF⟩ = Ee ̂T |HF⟩

Projected coupled-cluster equation

multiply from left e− ̂T

e− ̂T ̂H e ̂T |HF⟩ = E |HF⟩ ⟨HF |e− ̂T ̂H e ̂T |HF⟩ = E

⟨μ ̂H e ̂T HF⟩ = E ⟨μ e ̂T HF⟩

e− ̂Tmultiply from left 

⟨μ |e− ̂T ̂H e ̂T |HF⟩ = 0⟨μ |e− ̂T ̂H e ̂T |HF⟩ = E ⟨μ |e− ̂T e ̂T |HF⟩ = E ⟨μ |HF⟩ = 0

⟨HF |e− ̂T ̂H e ̂T |HF⟩ = E ⟨HF |HF⟩ ⟨HF |e− ̂T = ⟨HF |



⟨HF |e− ̂T ̂H e ̂T |HF⟩ = E

⟨μ |e− ̂T ̂H e ̂T |HF⟩ = 0

Project onto the Hartree-Fock reference to obtain the energy: 

Project onto excited determinants to obtain the equations for the amplitudes: 

Similarity transformation yields the Cambell-Baker-Hausdorff expansion: 

H̃ = e− ̂T ̂H e ̂T

 is a two-body operator and the amplitude equations are therefore coupled fourth order 
polynomials. 

̂H
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The coupled cluster energy 
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E = ⟨HF |e− ̂T ̂H e ̂T |HF⟩ = ⟨HF | ̂H e ̂T |HF⟩

E = ⟨HF | ̂H (1 + ̂T +
1
2

̂T2 + . . . ) |HF⟩ = ⟨HF | ̂H (1 + ̂T2 +
1
2

̂T2
1) |HF⟩

Expanding the cluster amplitudes, we obtain: 

Cluster operators higher than doubles do not contribute to the energy since  is a two-particle operator. ̂H

⟨HF | ̂H ̂T1 |HF⟩ = 0
Because of the Brillouin theorem, the one-particle operators 
contribute only to second-order: 

Only singles and doubles amplitudes contribute directly to the coupled-cluster energy. The higher-
order excitations contribute indirectly since all amplitudes are coupled by the projected equations.



⟨μ |e− ̂T ̂H e ̂T |HF⟩ = 0

The coupled cluster amplitude equations 
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The expressions for the CCSD amplitude equations: 

μ1 = Φa
i

μ2 = Φab
ij



Size-consistency 

For this property to hold, the wave function must be multiplicatively separable:  

Sum of separate calculations on 
each fragment  

A single calculation on both 
fragments: “supermolecule"   
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The "configuration interaction doubles” (CID) wave function, in which only linear terms in 
the cluster expansion are retained, is exact in this case. 

Size-consistency 
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Size-consistency 

CID does not include this term and thus is not size consistent. 
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Size-consistency 

CCD gives a multiplicatively separable wave function and thus is size consistent. 
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Size-consistency 
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