Fa)

.

ric

es

P\

.\
.




Zz—=—COSX



y = e” isin blue y=1+z+ 3 —|——|5|ngreen

30

a0 y=1+=x —|— is in purple

10 .

\ y=1+=xisin
y = lisin red
-4 = 0 2 4
-10
2 23 =k

o = A
l—l—iﬂ—l—g—l—g‘l— —i_ﬁ—l_




Yy = xisinred

. 333 31_,5 . .
y—m—g—l— =] is in purple

.|y = sin x is in blue

K

S

3

5 T . .
T Wy:m—ﬂ’_-y*’:_—?_'lsmgreen

3!

5!

&,
y:m—“:;—,lsm

(_l)kmﬂc—l-l
TR




R




What is this orbital?

1s ?
Deformed 1s ?

Which atom(s) this orbital belongs to?

Left?
Middle?
Right?
All?




No orbital for the middle atom at all 7/

Left atom Right atom
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A closer look

Can we remove those extra green area? YES!
Can we construct a true spherical orbital? YES!




Linear vector space

Two-dimensional Cartesian vector:

e =l E = i Ax
A=AI1+A =0 ]) A

y

Two-dimensional molecular orbital:

C
be =Cd, +C,D, = ((Dl CDZ)[Clj
2




Linear vector space

Base

1

/Cl\

Y=cd, +C, D, =(D, D,

\C2

|

Vector representation of the orbital




Vector superposition

A=a,l+a j+ak a, =Ii.A

| V) =C | Q) +C, | @,)+Cy| @)+
C, ={@ | )

/

The overlap between original electronic wave
functions and Ath resonance configuration



Projection Operator

| ) = Zl @y )Cy :Zl PP )
\ }

|

1= Z‘ PPy |

49 = |@)<®|0)+|89)(e0 |0+ 00) 00 @)+ -




Change of the base: linear transformation

C
) =¢,®, +C,0, = (D, qu)[(jj =®c
2

1P+ TP, The new base linearly
Oy =T,D,+T,,®, depends to the old one.

My T
(@) @)=(0, @) 12)

\T21 T22
O =T or P=D'T*




Change of the base: linear transformation

V=@c=@®'TC

On the other hand, 1) =®'c’ , therefore:

¢ =T"c
4 / / /
77b N Cch)l T Czq)z

Note that the wave function is not changed, it Is
just rewritten!




Why orthonormal base is preferred?

Computational viewpoint:

e Orthogonal bases are mathematically simple to deal with.

Chgmical viewpoint:

esults can be chemically interpreted.



Example: two normal vectors

A=Zi+%] (B +(H)° =1

Both i and j unit vectors have equally contributed to the

L] (B

I and j unit vectors have contributed to the vector, 1/3 and
2/3, respectively.



Bonding in hydrogen
molecule

.. — e .

ls 1s bonding molecular orbital

add




Linear Variation

lsa lsb

o-bonding MO

ED - Ca]?blsa T Ca%blsa




Orthogonalization of two 1s orbitals

<7vb1sa |'7blsb> =0.6/31

Profile of the two non-orthogonal 1s orbitals




Schmidt vs. symmetric orthogonalization

1sy 1S'i) 170{3& — 770156l
A/\ \r wisb o Clyblsa T C217b13b

!

a  Isy ‘Msa =Yy 6
J\ . lpisb = C2¢15a T Cl¢1sb

qj




Schmidt vs. symmetric orthogonalization

wisa 8 wlsa
gy, =-0.9226y,. +1.3606¢,,

Yl = 1.2672¢,, —0.4953y;,
i, =-0.4953y,, +1.2672¢,,



Symmetric orthogonalization operator
(introduced by Lowdin)

@ : non—orthogonal base
@’ : orthogonalized base

N[~

®' =®T,, where T, =S

Ssym

_1
is the Taylor expansion of the f (X) =X * function.

n be shown that S_% = CS_%CT.



Schmidt vs. symmetric orthogonalization

1 —O.9226j

Yis,) = W, U5, (o 1.3606

Tschmia (

(s,

1s,

1.2672 —0.4953
—0.4953 1.2672

¢{Sb ) N (17blsa gblsb ) (
Tsym (



Presence and absence of external electric
field

e remember that ¢’ =T '¢c

/ -1 1
C Cochmidt = TSchmidtC =T,,.C

sym

0.5459 0.9160 0.7072
[0.5459] 0.4012 0.7072

3 0.4465 0.8817 0.6496
lectric field
0.6419 0.4718 0.7604

Field frée




Decomposition into unperturbed states

0.5459 1.2463
0.5459 —-1.2463

A\¢:

CMO

(‘Pa @Da*) - (‘7b13a 17013,0 )[

/ -1
/ C Como = TCMOC

0.5459 1
Field free
0.5459 0

__ 0.4465 0.9969
lectric field
0.6419 —0.0784




BEX]

8 ()

L

1 1 b 1 fficients
1 2
(sGG)-——0 (s5GU)-—-V
EEEEEEEEEEEEE —0.59023 0. 70068
H 15 0. 54586 1.2462
H 15 0.54586 -1.27246/8
HHHHHHHHHHHHHH
1 2
H 15 0. 59592
H 1s 0. 59592 0. 59592

0.59592 0.59592
0.59592 0.59592

j—»

transformation

Transformation of density matrix
Example: hydrogen molecule

g

f



Example: Density matrix of hydrogen
molecule In the external field

o H2field.oui - Notepad =JOES
File Edit Format  Miew Help
Molecular orbital coefficients ™
1 2 N |
L8] Vv
EIGENVALUES —— -0.686259 0.63859
11 H 1s 0.446048 1.285%23
2 2 H 15 0.64187 -1.19966
DENSITY MATRIX. (]
1 2
11 H 1s 0.39860 1
z2 2 H 1s 0.57317 0.82399 kel
v S

transformation

— -

0.8437 0.9877
0.9877 1.1563




Tight-Binding approximation

The interaction between nearest neighbors is large
and decrease quickly with the distance

Atomic sites
\ \ [ Large 7
- B &

!




Nearest-Neighbors (N-N)

One has to choose the extension of the interactions
between neighbors

—
—

In general

first nearest-neighbors (1N-N)

3rd neighbors

2nd neighbors
1st neighbors



p()=n I\P‘P*dfzdfg---df

totalspace

n

1s, 1s,

/Ototal : plsa T plsb

— N I 1Sﬂ ISb I

Protal = N ; (plsa T Prsp < Zwlsawlsb)

T




Non-interacting H atoms

(Chemical description)

1s

a

1s,

P=|1s, Is,|

d

b
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H-H molecule

(MO and chemical description)

a b
c*=1s, —1s, ‘ ‘

c ~1s, +1s, I “




Non-interacting He atoms

(Chemical description)
a b

Is | b

=TT S
- ~
., ~
’ N
’ \
’ \
1 \
1 1
I 1
1 1
\ 1
\ U
\ G
N ’
N 4
—_— ~ -
~o Lo

Yv=|1s, 1s, 1s, 1s, |

a a




He-He molecule

(MO description)

a b
5 @@

c ~1s, +1s, i “

* 6*‘




Equivalent MO and VB-type
He-He system

=|lc o o* o

w=|1s, 1s, 1s, 1s,]

a a




(1s, 1s,)

(6 o)

L inear transformation

/% %\
1
\ V2 _T/

Unitary matrix

U =u-



Unitary transformation

(1s, 1s,)=(c o*)U

a

Any U is acceptable! The ONLY requirement is
that it must be unitary.




How to define U ?

- Chemical interpretation

2- Physical imposition

3- Mathematical restriction




Chemical interpretation

(example: localization)

1- Chemical interpretation . Localization

22?

2- Physical imposition

Mathematical restriction R U‘r 44 U—l



Find U so that the resultant orbitals
provide eigenfunctions of certain
symmetry operator.

P
L

cgﬁ Equivalent orbitals

/




Electron density

p = [Wwdr,..dr,

For closed-shell single determinantal wave function:

P=> 200 =221 % I
k=1 k=1

Where the summation is over CMOs.




Electron density

For many determinantal wave function, it can be
shown that:

basis basis

P = anekez N an |10, ‘2
k=1 k=1

Gk is called Natural Orbital.

N, is called Occupancy.




Matrix representation of density

Xk:(q)l CI)n) . |=Dc,




Matrix representation of density

ZP@@

p_q)PcI)’f
(P, - pln\/q)’l*\
(@, - o) i |
\Pnl Pnn/\q)n)




Comparison of electron density of
Interacting and non-interacting systems

2 2 . .
Po =l 17 +1¢y 17 non-interacting

V., =N(¢g +15) interacting

p, =, P=2N(y7 +¢fsb>

Responsible for the interaction !! ’




Density matrix representation

(Dl CDZ
5 [Pul R @
l\ D21 D22/) CDZ

IO . P]_lq)zq)l T PlZCDICDZ T PZch;q)l + PZZCD;CDZ




Comparison of density matrices of
Interacting and non-interacting systems

P, = L0 non-interacting
0 1

2N% |2N°
Py = N2 2N?2 interacting

In matrix representation, the off-diagonal elements are
responsible for the interaction.




Actual system: hydrogen molecule

P, = y” non-interacting
0 1

o)

(0596 0.596
- 10.596 0.596

j interacting




Wiberg bond index

Wiberg bond index, simply adds up squares of density matrix
off-diagonal elements:

AB :ZZ‘ Pij ‘2

IcA jeB

0596 0.596
Wiberg (H2): P:+P; =071 * :(0.596 O.596j



Natural Orbitals

It can be shown that b is eigenvector of
the density matrix, whose eigenvalue is
ItS occupancy.

Pb, =nDb,




Matrix representation of

natural orbitals

(@, - @) i |=®b,




Natural Orbitals

PB=nB
( SRR, D1 \
VIRRYY Dan




Natural Orbitals with overlap
taken Iinto consideration

PSB =Bn

Where S is the overlap matrix.

In practice, to diagonalize a matrix using
standard mathematical softwares, P can be
diagonalized in some orthonormal basis.



Density Matrix Blocks

BA




Fand P

For single determinantal wave functions, F commute with
P; which means that they share the same eigenvectors.

BUT, be careful with degenerate ones!

occ. energy
2 x| —-7.38
2 [ x,| —4.6
2 | x| —4.6

0 . 9.8




Example: hydrogen molecule

.

o\ H2.gjf - Notepad Q@] o\ H2.oui - Notepad E]@

File Edit Format View Help File Edit Format Wiew Help

# pop=full Molecular orbital coefficients o~
1 2 il

testHs (SGG)-—0 (SGU)——V

01 EIGENVALUES —— -0.59023 0. 70068 -

H 11 H 15 0. 54586 1.24628 .

H 10 7122 22 H 1s 0.54586 -1.24628 ™

{ 1M }

), =0.54586 ;. +0.54586 1),
0.54586 “+ 0.54586 “#~ 1

Alttpough the base is not orthogonal, the symmetry implies equal
contpipution from the two atoms.




ecomposition of CMOs into localized
orbitals and vice versa

0 study certain cases e.g., chemical reactivity, it would be more
elpful to understand how the localized orbitals construct HOMO or

n the other hand, one might be interested to know components of



Definition of matrices

D) C=(c, - ¢c)
An ) Transformation
Hn) matrix

Elements are functions ! Elements are scalars !




Transformation and back-transformation

P X =DPCryo mp O = XCCMO

- O :(I)CLMO _l

0= XCCk/IOCLMO

= % Lemoo Lmo



alized orbitals are not necessarily orthogonal !

‘ﬁ{e}_<‘9 “9> and 0= (I)CLMO

- es/w F=®C,, 5"

9’((: LMOS{Q}_f)_1 CCI\/IO — OFI_IZI\/IO—)CI\/IO

, {6} 3\-1
TLI\/IO—)CMO = (CLMOS ) CCMO




The three transformations

S¥Y = CT_MOSCLMO where Sij = (D ‘(DJ'>

- -1
| MO—-CMO CLMOCCMO
1 - T —% -1
\ LMO—->CMO (CLMO(CLMOSCLMO) ) CCMO

_ ~-1
SLMO — CCMOCLMO




2-H2 interaction as vdW complex:

33 o comp.out - Notepad E]@
File Edit Formak View Help
Mos in the A0 basis: [a]
AD 1 2 3 4

1. H1 (5) 0.3811 0.3895 -0.8873 0.8974

2. H 2 (5) 0.3825 0.3874 0.8930 -0.8921

3. H 3 (5) 0.3825 -0.3874 -0_.8930 -0.8921
4. H 4 (5) 0.3811 -0.3895 O0.8873 0.80974 [v]

A | 3]




: . P
Visual decomposition of complex’
CMOs into fragments’ CMOs

JJ

@ @ 0 @
2 @ o

121034 01,03, 0,,+0;, 0127034




Decomposition of complex’ CMOs
into fragments’ CMOs

(03811 03895 -0.8873 0.8974 )
03825 03874 0.8930 -0.8921
03825 -03874 -0.8930 -0.8921

03811 -03895 0.8873 0.8974 )

1s, 1s,)

Xfragz =@ C

fragl — (I)fraglcfragl . frag2™ frag2 —

05459 1.2463 0.5459 1.2463
( 1s,) (Is, 1s,)
05459 —1.2463 0.5459 -1.2463




Rewriting of fragments’ matrices

(0.5459 1.2463

0.5459 -1.2463

=(s, 1s, 1s, 1s,)

: fragl

0 0
. O 0
(0 0 )

0 0

=(1s, 1s, 1s, 1s
=8 15, 15, 1s,) 0.5459 1.2463

|0.5459 —1.2463,




/v\

Unification of the fragments

(05459 1.2463 0 g

s 15, 05459 12463 0 0
0 0 05459 1.2463
0 0 05459 —1.2463,




Transformation into fragments

=OC

Xcomp comp

OC ‘ XComp £ fragsC fragchomp
frags T C C

frags ~ comp

L frags
frags—>comp

esired, fragments’ orbitals can be orthogonalized
|th the same procedure as localized orbitals.



Are off-diagonal elements of
density matrix “physical” ?

Matrix representation of first-order density

pz'f‘}’*‘Pdrz...drN

/pll |:>1n\(q)’l*\

*

nJ

Py o P @

nn

Matrix representation of time-independent
Schrodinger equation HC=SCE







