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Matrices in Quantum Chemistry
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What is this orbital?

1s ?
Deformed 1s ?

Which atom(s) this orbital belongs to?

Left?
Middle?
Right?
All?
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No orbital for the middle atom at all !!

Left atom Right atom



8 A closer look

Can we remove those extra green area?   YES!

Can we construct a true spherical orbital? YES!



9 Linear vector space
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Two-dimensional Cartesian vector:

Two-dimensional molecular orbital:
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10 Linear vector space
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Base

Vector representation of the orbital
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kjiA zyx aaa ++= i.A=xa

+++= 332211 |||| φφφψ ccc
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Vector superposition

The overlap between original electronic wave 
functions and k-th resonance configuration 
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Projection Operator

  || kk φφ1



13 Change of the base: linear transformation

Φc=
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The new base linearly 
depends to the old one.



14 Change of the base: linear transformation

cTΦΦc
1−==ψ

cΦ =ψOn the other hand, , therefore:

cTc
1−=

2211 += ccψ

Note that the wave function is not changed, it is 

just rewritten!



15 Why orthonormal base is preferred?

Computational viewpoint:

● Orthogonal bases are mathematically simple to deal with.

Chemical viewpoint:

● Results can be chemically interpreted.



16 Example: two normal vectors

jiA
2

1

2

1


+= 1)()( 2

2

12

2

1 =+

Both i and j unit vectors have equally contributed to the 
vector, each 1/2.
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i and j unit vectors have contributed to the vector, 1/3 and 
2/3, respectively.



Bonding in hydrogen 

molecule



18 Linear Variation

aa sasa cc 11 ψψψ +=



19 Orthogonalization of two 1s orbitals

Profile of the two non-orthogonal 1s orbitals

6781.0| 11 =
ba ss ψψ



20 Schmidt vs. symmetric orthogonalization
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21 Schmidt vs. symmetric orthogonalization
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22 Symmetric orthogonalization operator

(introduced by Löwdin)
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Schmidt vs. symmetric orthogonalization



24 Presence and absence of external electric 

field

cTc
1−=We remember that
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25 Decomposition into unperturbed states
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Transformation of density matrix 

Example: hydrogen molecule
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59592.059592.0

59592.059592.0
P

transformation
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1563.19877.0

9877.08437.0
P

Example: Density matrix of hydrogen 

molecule in the external field

transformation
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First-Order Reduced Density
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Non-interacting H atoms

(Chemical description)

as1

bs1

a b

as1

bs1
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H-H molecule

(MO and chemical description)

ba ss 11σ +=

|σσ|=ψ

σ
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a b

ba ss 11σ* −=
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Non-interacting He atoms

(Chemical description)
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|1111| bbaa ssss=ψ
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He-He molecule

(MO description)

ba ss 11σ +=

|*σ*σσσ|=ψ

σ

*σ

a b

ba ss 11σ* −=
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Equivalent MO and VB-type

He-He system

|1111| bbaa ssss=ψ

|*σ*σσσ|=ψ



36 Linear transformation
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Unitary matrix

1† −= UU



37 Unitary transformation

( ) ( ) U*σσ11 =ba ss

Any U is acceptable! The ONLY requirement is 
that it must be unitary.



38 How to define U ?

1- Chemical interpretation

2- Physical imposition

3- Mathematical restriction
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Chemical interpretation

(example: localization)

1- Chemical interpretation

2- Physical imposition

3- Mathematical restriction

Localization

???

1† −= UU
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Equivalent orbitals

Find U so that the resultant orbitals 
provide eigenfunctions of certain 
symmetry operator.
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Electron density

Ndd rr ...2 = 
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For closed-shell single determinantal wave function:

Where the summation is over CMOs.
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Electron density
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For many determinantal wave function, it can be 
shown that:

is called Natural Orbital.

is called Occupancy.
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43 Matrix representation of density
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44 Matrix representation of density
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Comparison of electron density of 

interacting and non-interacting systems

)( 11 ba ssN ψψψ +=
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Responsible for the interaction !!
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Density matrix representation
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Comparison of density matrices of 

interacting and non-interacting systems
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In matrix representation, the off-diagonal elements are 

responsible for the interaction.
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Actual system: hydrogen molecule
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49 Wiberg bond index

Wiberg (H2): 71.02
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Wiberg bond index, simply adds up squares of density matrix 

off-diagonal elements:
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50 Natural Orbitals

It can be shown that b is eigenvector of 
the density matrix, whose eigenvalue is 
its occupancy.

kkk n bPb =
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Matrix representation of 

natural orbitals
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52 Natural Orbitals

nBPB =
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53 Natural Orbitals with overlap 

taken into consideration

BnPSB =

Where S is the overlap matrix.

In practice, to diagonalize a matrix using 
standard mathematical softwares, P can be 
diagonalized in some orthonormal basis.



Density Matrix Blocks



55 F and P

For single determinantal wave functions, F commute with
P; which means that they share the same eigenvectors.

BUT, be careful with degenerate ones!
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56 Example: hydrogen molecule

ba ss 11 54586.054586.0 ψψψ +=

154586.054586.0 22 +
Although the base is not orthogonal, the symmetry implies equal 

contribution from the two atoms.



57
Decomposition of CMOs into localized 

orbitals and vice versa

To study certain cases e.g., chemical reactivity, it would be more 

helpful to understand how the localized orbitals construct HOMO or 

LUMO. 

On the other hand, one might be interested to know components of 

some localized orbitals.

Question: Is HOMO the lone pair?
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( )n= 1Φ )( 1 nccC =
( )nχχ 1=χ

( )n 1=θ

Base

CMO

LMO

Transformation 

matrix

Elements are functions ! Elements are scalars !

Definition of matrices
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CMOΦCχ =

LMOΦCθ =
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Transformation and back-transformation
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Localized orbitals are not necessarily orthogonal !
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The three transformations

LMOCMOLMOCMO CCT
1−

→ =

CMOLMOCMOLMO CCT
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→ =
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62
H2-H2 interaction as vdW complex:



63
Visual decomposition of complex’ 

CMOs into fragments’ CMOs
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Decomposition of complex’ CMOs 

into fragments’ CMOs
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Rewriting of fragments’ matrices
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Unification of the fragments
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compcomp ΦCχ =

fragsfrags ΦCχ =

compfragscompfrags

compfragsfragscomp
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Transformation into fragments

If desired, fragments’ orbitals can be orthogonalized 

with the same procedure as localized orbitals.
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Are off-diagonal elements of 

density matrix “physical” ?

Matrix representation of first-order density

Matrix representation of time-independent 

Schrodinger equation

( )




































=
*

*

1

1

111

1

nnnn

n

n

PP

PP











HC=SCE

Ndd rr ...2 = 
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