
$z=\cos x$

4

What is this orbital?

1s?
Deformed 1s ?

Which atom(s) this orbital belongs to?
Left?
Middle?
Right?
All?

No orbital for the middle atom at all !!

Left atom

Right atom

A closer look

Can we remove those extra green area? YES! Can we construct a true spherical orbital? YES!

Linear vector space

Two-dimensional Cartesian vector:

$$
\overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \overrightarrow{\mathrm{i}}+\mathrm{A}_{y} \overrightarrow{\mathrm{j}}=\left(\begin{array}{ll}
\overrightarrow{\mathrm{i}} & \overrightarrow{\mathrm{j}}
\end{array}\right)\binom{\mathrm{A}_{x}}{\mathrm{~A}_{y}}
$$

Two-dimensional molecular orbital:

$$
\psi=c_{1} \Phi_{1}+c_{2} \Phi_{2}=\left(\begin{array}{ll}
\Phi_{1} & \Phi_{2}
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

Linear vector space

$$
\psi=c_{1} \Phi_{1}+c_{2} \Phi_{2}=\left(\begin{array}{ll}
\Phi_{1} & \Phi_{2}
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

Vector superposition

$$
\begin{aligned}
& \mathbf{A}=\mathrm{a}_{\mathrm{x}} \mathbf{i}+\mathrm{a}_{\mathrm{y}} \mathbf{j}+\mathrm{a}_{\mathrm{z}} \mathbf{k} \\
& |\psi\rangle=c_{1}\left|\varphi_{1}\right\rangle+c_{2}\left|\varphi_{2}\right\rangle+c_{3}\left|\varphi_{3}\right\rangle+\cdots \\
& \mathbf{c}_{1}=\left\langle\varphi_{1} \mid \psi\right\rangle
\end{aligned}
$$

The overlap between original electronic wave functions and \boldsymbol{k}-th resonance configuration

Projection Operator

$$
|\psi\rangle=\sum\left|\varphi_{k}\right\rangle c_{k}=\underbrace{\sum\left|\varphi_{k}\right\rangle\left\langle\varphi_{k} \mid \psi\right\rangle}
$$

$$
\mathbf{1} \equiv \sum\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right|
$$

$$
|-\theta\rangle=|0\rangle\langle\theta \mid \cdot \theta\rangle+|-0\rangle\langle\langle\theta \mid-\theta\rangle+\mid-\infty\rangle\langle\langle\theta \mid \cdot \theta\rangle+\cdots
$$

13 Change of the base: linear transformation

$$
\begin{aligned}
& \psi=c_{1} \Phi_{1}+c_{2} \Phi_{2}=\left(\begin{array}{ll}
\Phi_{1} & \Phi_{2}
\end{array}\right)\binom{c_{1}}{c_{2}}=\boldsymbol{\Phi c} \\
& \Phi_{1}^{\prime}=T_{11} \Phi_{1}+T_{21} \Phi_{2} \quad \text { The new base linearly } \\
& \Phi^{\prime}=T_{12} \Phi_{1}+T_{22} \Phi_{2} \quad \text { depends to the old one. } \\
& \left(\Phi_{1}^{\prime}\right. \\
& \left.\Phi_{2}^{\prime}\right)=\left(\begin{array}{ll}
\Phi_{1} & \Phi_{2}
\end{array}\right)\left(\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right) \\
& \boldsymbol{\Phi}^{\prime}=\boldsymbol{\Phi T} \text { or } \boldsymbol{\Phi}=\boldsymbol{\Phi}^{\prime} \mathbf{T}^{-1}
\end{aligned}
$$

Change of the base: linear transformation
$\psi=\boldsymbol{\Phi} \mathbf{c}=\boldsymbol{\Phi}^{\prime} \mathbf{T}^{-1} \mathbf{c}$
On the other hand, $\psi=\boldsymbol{\Phi}^{\prime} \mathbf{c}^{\prime}$, therefore:
$\mathbf{c}^{\prime}=\mathbf{T}^{-1} \mathbf{c}$
$\psi=c_{1}^{\prime} \Phi_{1}^{\prime}+c_{2}^{\prime} \Phi_{2}^{\prime}$
Note that the wave function is not changed, it is just rewritten!

Why orthonormal base is preferred?

Computational viewpoint:

- Orthogonal bases are mathematically simple to deal with.

Chemical viewpoint:

- Results can be chemically interpreted.

Example: two normal vectors

$$
\overrightarrow{\mathrm{A}}=\frac{1}{\sqrt{2}} \overrightarrow{\mathrm{i}}+\frac{1}{\sqrt{2}} \overrightarrow{\mathrm{j}} \quad\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}=1
$$

Both i and j unit vectors have equally contributed to the vector, each 1/2.
$\overrightarrow{\mathrm{B}}=\frac{1}{\sqrt{3}} \overrightarrow{\mathrm{i}}+\frac{\sqrt{2}}{\sqrt{3}} \overrightarrow{\mathrm{j}} \quad\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{\sqrt{2}}{\sqrt{3}}\right)^{2}=1$
i and j unit vectors have contributed to the vector, $1 / 3$ and 2/3, respectively.

Bonding in hydrogen molecule

Linear Variation

19 Orthogonalization of two $1 s$ orbitals

$\left\langle\psi_{1 s_{a}} \mid \psi_{1 s_{b}}\right\rangle=0.6781$

Profile of the two non-orthogonal 1 s orbitals

20

Schmidt vs. symmetric orthogonalization

$$
\begin{aligned}
& \psi_{1 s_{a}}^{\prime}=\psi_{1 s_{a}} \\
& \psi_{1 s_{b}}^{\prime}=c_{1} \psi_{1 s_{a}}+c_{2} \psi_{1 s_{b}} \\
& \psi_{1 s_{a}}^{\prime}=c_{1} \psi_{1 s_{a}}+c_{2} \psi_{1 s_{b}} \\
& \psi_{1 s_{b}}^{\prime}=c_{2} \psi_{1 s_{a}}+c_{1} \psi_{1 s_{b}}
\end{aligned}
$$

Schmidt vs. symmetric orthogonalization

$$
\begin{aligned}
& \psi_{1 s_{a}}^{\prime}=\psi_{1 s_{a}} \\
& \psi_{1 s_{b}}^{\prime}=-0.9226 \psi_{1 s_{a}}+1.3606 \psi_{1 s_{b}} \\
& \psi_{1 s_{a}}^{\prime}=1.2672 \psi_{1 s_{a}}-0.4953 \psi_{1 s_{b}} \\
& \psi_{1 s_{b}}^{\prime}=-0.4953 \psi_{1 s_{a}}+1.2672 \psi_{1 s_{b}}
\end{aligned}
$$

Symmetric orthogonalization operator

(introduced by Löwdin)

$\mathbf{\Phi}$: non-orthogonal base
$\boldsymbol{\Phi}^{\prime}$: orthogonalized base

$$
\boldsymbol{\Phi}^{\prime}=\boldsymbol{\Phi} \mathbf{T}_{s y m} \quad \text { where } \quad \mathbf{T}_{s y m}=\mathbf{S}^{-\frac{1}{2}}
$$

is the Taylor expansion of the $f(x)=x^{-\frac{1}{2}}$ function.
It can be shown that $\mathbf{S}^{-\frac{1}{2}}=\mathbf{C s}^{-\frac{1}{2}} \mathbf{C}^{\dagger}$.

23

Schmidt vs. symmetric orthogonalization $\left(\begin{array}{ll}\psi_{1 s_{a}}^{\prime} & \psi_{1 s_{b}}^{\prime}\end{array}\right)=\left(\begin{array}{ll}\psi_{1 s_{a}} & \psi_{1 s_{b}}\end{array}\right)\left(\begin{array}{cc}1 & -0.9226 \\ 0 & 1.3606\end{array}\right)$
$\mathbf{T}_{\text {Schmidt }}$

$$
\begin{gathered}
\left.\psi_{1 s_{b}}^{\prime}\right)=\left(\begin{array}{ll}
\psi_{1 s_{a}} & \psi_{1 s_{b}}
\end{array}\right)\left(\begin{array}{cc}
1.2672 & -0.4953 \\
-0.4953 & 1.2672
\end{array}\right) \\
\mathbf{T}_{s y m}
\end{gathered}
$$

Presence and absence of external electric

 fieldWe remember that $\mathbf{c}^{\prime}=\mathbf{T}^{-1} \mathbf{c}$

	\mathbf{c}	$\mathbf{c}_{\text {Schmidt }}^{\prime}=\mathbf{T}_{\text {Schmidt }}^{-1} \mathbf{c}$
$\mathbf{c}_{\text {sym }}^{\prime}=\mathbf{T}_{\text {sym }}^{-1} \mathbf{c}$		
Field fifee		
$\binom{0.5459}{0.5459}$	$\binom{0.9160}{0.4012}$	$\binom{0.7072}{0.7072}$
electic field		
$\binom{0.4465}{0.6419}$	$\binom{0.8817}{0.4718}$	$\binom{0.6496}{0.7604}$

Decomposition into unperturbed states

$$
\begin{gathered}
\left(\begin{array}{ll}
\psi_{\sigma} & \psi_{\sigma^{*}}
\end{array}\right)=\left(\begin{array}{ll}
\psi_{1 s_{a}} & \psi_{1 s_{b}}
\end{array}\right)\left(\begin{array}{cc}
0.5459 & 1.2463 \\
0.5459 & -1.2463
\end{array}\right) \\
\mathbf{c} \quad \mathbf{c}_{C M O}^{\prime}=\mathbf{T}_{C M O}^{-1} \mathbf{c} \\
\binom{0.5459}{0.5459}
\end{gathered}
$$

Electric field $\binom{0.4465}{0.6419}$

$$
\binom{0.9969}{-0.0784}
$$

Transformation of density matrix Example: hydrogen molecule

transformation
$\left(\begin{array}{ll}0.59592 & 0.59592 \\ 0.59592 & 0.59592\end{array}\right)$

$$
\mathbf{P}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Example: Density matrix of hydrogen molecule in the external field

transformation
$\mathbf{P}^{\prime}=\left(\begin{array}{ll}0.8437 & 0.9877 \\ 0.9877 & 1.1563\end{array}\right)$

Tight-Binding approximation

The interaction between nearest neighbors is large and decrease quickly with the distance

Atomic sites

0

Nearest-Neighbors (N-N)

- One has to choose the extension of the interactions between neighbors
- In general
first nearest-neighbors ($1 \mathrm{~N}-\mathrm{N}$) or third nearest-neighbors ($3 \mathrm{~N}-\mathrm{N}$)

3 rd neighbors
2nd neighbors 1st neighbors

First-Order Reduced Density

$\rho(1)=n \quad \int \Psi \Psi^{*} d \tau_{2} d \tau_{3} \cdots d \tau_{n}$
totalspace

$1 \mathrm{~s}_{\mathrm{a}}$
 $1 \mathrm{~s}_{\mathrm{b}}$

$\rho_{\text {total }}=\rho_{1 s a}+\rho_{1 s b}$

$\rho_{\text {total }}=N^{2}\left(\rho_{1 s a}+\rho_{1 s b}-2 \psi_{1 s a} \psi_{1 s b}\right)$

Non-interacting \mathbf{H} atoms

(Chemical description)

$a \quad b$
$1 S_{a}$

$1 s_{b}$

$$
\psi=\left|\begin{array}{ll}
1 s_{a} & \overline{1 s_{b}}
\end{array}\right|
$$

H-H molecule

(MO and chemical description)

$$
\begin{gathered}
\sigma^{*}=1 s_{a}-1 s_{b} \\
\sigma=1 s_{a}+1 s_{b} \\
\psi=\mid \sigma \\
\sigma \\
\sigma \\
\sigma \\
\sigma
\end{gathered}
$$

Non-interacting He atoms

(Chemical description)

$1 S_{a}$
$1 S_{b}$
$\psi=\left|1 s_{a} \quad \overline{1 s_{a}} \quad 1 s_{b} \quad \overline{1 s_{b}}\right|$
$1 s_{a}$

He-He molecule

(MO description)

$\sigma^{*}=1 s_{a}-1 s_{b}$

$\sigma *$
$\sigma=1 s_{a}+1 s_{b}$ $\xlongequal{\dagger}$

σ

$$
\psi=\left|\begin{array}{llll}
\sigma & \bar{\sigma} & \sigma^{*} & \bar{\sigma}^{*}
\end{array}\right|
$$

Equivalent MO and VB-type

 35
He-He system

$$
\begin{gathered}
\psi=\left|\begin{array}{llll}
\sigma & \bar{\sigma} & \sigma^{*} & \bar{\sigma}^{*}
\end{array}\right| \\
\psi=\left|\begin{array}{llll}
1 s_{a} & \overline{1 s_{a}} & 1 s_{b} & \overline{1 s_{b}}
\end{array}\right|
\end{gathered}
$$

Linear transformation

$$
\begin{array}{r}
\left.1 S_{b}\right)=\left(\begin{array}{ll}
\sigma & \sigma *
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \\
\\
\text { Unitary matrix }
\end{array}
$$

$$
\mathbf{U}^{\dagger}=\mathbf{U}^{-1}
$$

Unitary transformation

$$
\left(1 s_{a} \quad 1 s_{b}\right)=\left(\begin{array}{ll}
\sigma & \sigma^{*}
\end{array}\right) \mathbf{U}
$$

Any U is acceptable! The ONLY requirement is that it must be unitary.

How to define \mathbf{U} ?

1- Chemical interpretation
2- Physical imposition
3- Mathematical restriction

Chemical interpretation

(example: localization)

1- Chemical interpretation
\longrightarrow Localization

2- Physical imposition

3- Mathematical restriction $\longrightarrow \mathbf{U}^{\dagger}=\mathbf{U}^{-1}$

Find U so that the resultant orbitals provide eigenfunctions of certain symmetry operator.

Equivalent orbitals

Electron density

$$
\rho=\int \Psi^{*} \Psi d \mathbf{r}_{2} \ldots d \mathbf{r}_{N}
$$

For closed-shell single determinantal wave function:

$$
\rho=\sum_{k=1}^{o c c} 2 \chi_{k} \chi_{k}^{*}=\sum_{k=1}^{o c c} 2\left|\chi_{k}\right|^{2}
$$

Where the summation is over CMOs.

Electron density

For many determinantal wave function, it can be shown that:

$$
\rho=\sum_{k=1}^{\text {basis }} n_{k} \theta_{k} \theta_{k}^{*}=\sum_{k=1}^{\text {basis }} n_{k}\left|\theta_{k}\right|^{2}
$$

θ_{k} is called Natural Orbital. n_{k} is called Occupancy.

Matrix representation of density

$$
\begin{gathered}
\chi_{k}=\sum_{j=1}^{n} c_{j k} \Phi_{j} \\
\chi_{k}=\left(\begin{array}{lll}
\Phi_{1} & \cdots & \Phi_{n}
\end{array}\right)\left(\begin{array}{c}
c_{1 k} \\
\vdots \\
c_{n k}
\end{array}\right)=\boldsymbol{\Phi} \mathbf{c}_{k} \\
\boldsymbol{\Phi}=\left(\begin{array}{lll}
\Phi_{1} & \cdots & \Phi_{n}
\end{array}\right)
\end{gathered}
$$

Matrix representation of density

$$
\rho=\sum_{i j}^{n} P_{i j} \Phi_{i} \Phi_{j}^{*}
$$

$$
\rho=\boldsymbol{\Phi} \mathbf{P} \boldsymbol{\Phi}^{\dagger}
$$

Comparison of electron density of

 interacting and non-interacting systems$$
\rho_{0}=\left|\psi_{1 s_{a}}\right|^{2}+\left|\psi_{1 s_{b}}\right|^{2} \quad \text { non-interacting }
$$

$$
\psi_{\sigma}=N\left(\psi_{1 s_{a}}+\psi_{1 s_{b}}\right) \quad \text { interacting }
$$

$$
\rho_{\sigma}=\left|\psi_{\sigma}\right|^{2}=2 N^{2}\left(\psi_{1 s_{a}}^{2}+\psi_{1 s_{b}}^{2}+\psi_{1 s_{a}} \psi_{1 s_{b}}\right)
$$

Responsible for the interaction !!

Density matrix representation

$$
\mathbf{P}=\left(\begin{array}{l|l}
\Phi_{1} & \Phi_{2} \\
\hline\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right) \Phi_{1} \\
\hline
\end{array}\right.
$$

$\rho=P_{11} \Phi_{1}^{*} \Phi_{1}+P_{12} \Phi_{1}^{*} \Phi_{2}+P_{21} \Phi_{2}^{*} \Phi_{1}+P_{22} \Phi_{2}^{*} \Phi_{2}$

Comparison of density matrices of

 interacting and non-interacting systems$$
\begin{array}{ll}
\mathbf{P}_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \text { non-interacting } \\
\mathbf{P}_{\sigma}=\left(\begin{array}{ll}
2 N^{2} & 2 N^{2} \\
2 N^{2} & 2 N^{2}
\end{array}\right. & \text { interacting }
\end{array}
$$

In matrix representation, the off-diagonal elements are responsible for the interaction.

Actual system: hydrogen molecule

$$
\mathbf{P}_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

non-interacting

$$
\mathbf{P}_{\sigma}=\left(\begin{array}{ll}
0.596 & 0.596 \\
0.596 & 0.596
\end{array}\right)
$$

interacting

Wiberg bond index

Wiberg bond index, simply adds up squares of density matrix off-diagonal elements:
$W_{A B}=\sum_{i \in A} \sum_{j \in B}\left|P_{i j}\right|^{2}$

Wiberg (H2): $\quad P_{12}^{2}+P_{21}^{2}=0.71 \quad \mathbf{P}_{\sigma}=\left(\begin{array}{ll}0.596 & 0.596 \\ 0.596 & 0.596\end{array}\right)$

Natural Orbitals

It can be shown that \mathbf{b} is eigenvector of the density matrix, whose eigenvalue is its occupancy.

$$
\mathbf{P} \mathbf{b}_{k}=n_{k} \mathbf{b}_{k}
$$

Matrix representation of

natural orbitals

$$
\begin{aligned}
& \theta_{k}=\sum_{j=1}^{n} b_{j k} \Phi_{j} \\
& \theta_{k}=\left(\begin{array}{lll}
\Phi_{1} & \cdots & \Phi_{n}
\end{array}\right)\left(\begin{array}{c}
b_{1 k} \\
\vdots \\
b_{n k}
\end{array}\right)=\mathbf{\Phi} \mathbf{b}_{k}
\end{aligned}
$$

Natural Orbitals

$\mathbf{P B}=\mathbf{n B}$

$$
\begin{array}{r}
\mathbf{B}=\left(\begin{array}{cccc}
b_{11} & b_{12} & \vdots & b_{1 n} \\
b_{21} & b_{22} & \vdots & b_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
b_{n 1} & b_{n 2} & \vdots & b_{n n}
\end{array}\right) \\
\vdots \\
\dagger \\
\\
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}
$$

53 Natural Orbitals with overlap

 taken into consideration
$\mathbf{P S B}=\mathbf{B n}$

Where S is the overlap matrix.
In practice, to diagonalize a matrix using standard mathematical softwares, P can be diagonalized in some orthonormal basis.

Density Matrix Blocks

F and P

For single determinantal wave functions, F commute with P; which means that they share the same eigenvectors.
BUT, be careful with degenerate ones!

Example: hydrogen molecule

$$
\begin{aligned}
& \psi_{\sigma}=0.54586 \psi_{1 s_{a}}+0.54586 \psi_{1 s_{b}} \\
& 0.54586^{2}+0.54586^{2} \neq 1
\end{aligned}
$$

Altppugh the base is not orthogonal, the symmetry implies equal contribution from the two atoms.

Decomposition of CMOs into localized orbitals and vice versa

To study certain cases e.g., chemical reactivity, it would be more helpful to understand how the localized orbitals construct HOMO or LUMO.

On the other hand, one might be interested to know components of some localized orbitals.

Quedtion: Is HOMO the lone pair?

Definition of matrices

Base $\boldsymbol{\Phi}=\left(\begin{array}{lll}\Phi_{1} & \cdots & \Phi_{n}\end{array}\right)$
 CMO $\boldsymbol{\chi}=\left(\begin{array}{lll}\chi_{1} & \cdots & \chi_{n}\end{array}\right)$
 $\mathrm{LMO} \boldsymbol{\theta}=\left(\begin{array}{lll}\theta_{1} & \cdots & \theta_{n}\end{array}\right)$

Elements are functions!

$$
\begin{gathered}
\mathbf{C}=\left(\begin{array}{lll}
\mathbf{c}_{1} & \cdots & \mathbf{c}_{n}
\end{array}\right) \\
\text { Transformation } \\
\text { matrix }
\end{gathered}
$$

Elements are scalars!

Transformation and back-transformation

 59```
\(\boldsymbol{\chi}=\boldsymbol{\theta} \mathbf{C}_{L M O}^{-1} \mathbf{C}_{\text {CMO }}\)
 \(=\boldsymbol{\theta} \mathbf{T}_{L M O \rightarrow C M O}\)
 \(\boldsymbol{\chi}=\mathbf{\Phi} \mathbf{C}_{C M O} \longrightarrow \boldsymbol{\Phi}=\boldsymbol{\chi} \mathbf{C}_{C M O}^{-1}\)
\(\boldsymbol{\theta}=\mathbf{\Phi} \mathbf{C}_{L M O}\)
\[
\begin{aligned}
\boldsymbol{\theta} & =\boldsymbol{\chi} \mathbf{C}_{C M O}^{-1} \mathbf{C}_{L M O} \\
& =\boldsymbol{\chi} \mathbf{T}_{C M O \rightarrow L M O}
\end{aligned}
\]
```

Localized orbitals are not necessarily orthogonal ! 60

$$
\left\{\begin{array}{l}
\mathbf{S}_{i j}^{\{\theta\}}=\left\langle\theta_{i} \mid \theta_{j}\right\rangle \text { and } \boldsymbol{\theta}=\boldsymbol{\Phi} \mathbf{C}_{L M O} \\
\boldsymbol{\theta}^{\prime}=\boldsymbol{\theta} \mathbf{S}^{\{\theta\}^{-\frac{1}{2}}}=\mathbf{\Phi} \mathbf{C}_{L M O} \mathbf{S}^{\{\theta\}^{-\frac{1}{2}}} \\
=\theta\left(\mathrm{C}_{L M O}^{-1} \mathrm{C}_{C M O}=\theta \mathrm{T}_{L M O \rightarrow C M O}\right. \\
\boldsymbol{\theta}^{\prime}\left(\mathbf{C}_{L M O} \mathbf{S}^{\{\theta\}^{-\frac{1}{2}}}\right)^{-1} \mathbf{C}_{C M O}=\boldsymbol{\theta}^{\prime} \mathbf{T}_{L M O \rightarrow C M O}^{\prime} \\
\mathbf{T}_{L M O \rightarrow C M O}^{\prime}=\left(\mathbf{C}_{L M O} \mathbf{S}^{\{\theta\}^{-\frac{1}{2}}}\right)^{-1} \mathbf{C}_{C M O}
\end{array}\right.
$$

## The three transformations

$\mathbf{S}^{\{\theta\}}=\mathbf{C}_{L M O}^{\dagger} \mathbf{S C}_{L M O} \quad$ where $\quad \mathbf{S}_{i j}=\left\langle\Phi_{i} \mid \Phi_{j}\right\rangle$
$\mathbf{T}_{C M O \rightarrow L M O}=\mathbf{C}_{C M O}^{-1} \mathbf{C}_{L M O}$
$\mathbf{T}_{\text {LMO } \rightarrow \text { СмO }}=\mathbf{C}_{\text {LMO }}^{-1} \mathbf{C}_{\text {CMO }}$
$\mathbf{T}_{L M O \rightarrow C M O}^{\prime}=\left(\mathbf{C}_{L M O}\left(\mathbf{C}_{\text {LMO }}^{\dagger} \mathbf{S C}_{L M O}\right)^{-\frac{1}{2}}\right)^{-1} \mathbf{C}_{C M O}$

## $\mathrm{H} 2-\mathrm{H} 2$ interaction as vdW complex:

 CMOs into fragments' CMOs


中

$\sigma_{1,2}-\sigma_{3,4}$
$\sigma_{1,2}^{*}+\sigma_{3,4}^{*}$
$\sigma_{1,2}^{*}-\sigma_{3,4}^{*}$

## Decomposition of complex' CMOs into fragments' CMOs

$\chi_{\text {comp }}=\mathbf{\Phi C} \mathbf{c o m p}=$
$\left(1 s_{1} \quad 1 s_{2} \quad 1 s_{3} \quad 1 s_{4}\right)\left(\begin{array}{cccc}0.3811 & 0.3895 & -0.8873 & 0.8974 \\ 0.3825 & 0.3874 & 0.8930 & -0.8921 \\ 0.3825 & -0.3874 & -0.8930 & -0.8921 \\ 0.3811 & -0.3895 & 0.8873 & 0.8974\end{array}\right)$
$\chi_{\text {frag } 1}=\boldsymbol{\Phi}_{\text {frag } 1} \mathbf{C}_{\text {frag1 }}=$

$$
\left.1 s_{2}\right)\left(\begin{array}{cc}
0.5459 & 1.2463 \\
0.5459 & -1.2463
\end{array}\right)
$$

$\boldsymbol{\chi}_{\text {frag } 2}=\boldsymbol{\Phi}_{\text {frag } 2} \mathbf{C}_{\text {frag } 2}=$
$\left(\begin{array}{ll}1 s_{1} & 1 s_{2}\end{array}\right)\left(\begin{array}{cc}0.5459 & 1.2463 \\ 0.5459 & -1.2463\end{array}\right)$

## Rewriting of fragments' matrices

$$
\begin{aligned}
& \chi_{\text {frag1 }}=\left(\begin{array}{llll}
1 s_{1} & 1 s_{2} & 1 s_{3} & 1 s_{4}
\end{array}\right)\left(\begin{array}{cc}
0.5459 & 1.2463 \\
0.5459 & -1.2463 \\
0 & 0 \\
0 & 0
\end{array}\right) \\
& \chi_{t d_{4}, 2}=\left(\begin{array}{llll}
1 s_{1} & 1 s_{2} & 1 s_{3} & 1 s_{4}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0.5459 & 1.2463 \\
0.5459 & -1.2463
\end{array}\right)
\end{aligned}
$$

## Unification of the fragments

$\chi_{\text {frags }}=$

## Transformation into fragments

## $\chi_{\text {comp }}=\mathbf{\Phi C}_{\text {comp }}$

$\boldsymbol{\chi}_{\text {frags }}=\mathbf{\Phi} \mathbf{C}_{\text {frags }} \quad \begin{aligned} & \boldsymbol{\chi}_{\text {comp }}=\boldsymbol{\chi}_{\text {frags }} \mathbf{C}_{\text {frags }}^{-1} \mathbf{C}_{\text {comp }} \\ & \mathbf{T}_{\text {frags } \rightarrow \text { comp }}=\mathbf{C}_{\text {frags }}^{-1} \mathbf{C}_{\text {comp }}\end{aligned}$

If desired, fragments' orbitals can be orthogonalized with the same procedure as localized orbitals.

# Are off-diagonal elements of density matrix "physical"? 

Matrix representation of first-order density

$$
\begin{aligned}
& \rho=\int \Psi^{*} \Psi d \mathbf{r}_{2} \ldots d \mathbf{r}_{N} \\
& \rho=\left(\begin{array}{lll}
\Phi_{1} & \cdots & \Phi_{n}
\end{array}\right)\left(\begin{array}{ccc}
P_{11} & \cdots & P_{1 n} \\
\vdots & \ddots & \vdots \\
P_{n 1} & \cdots & P_{n n}
\end{array}\right)\left(\begin{array}{c}
\Phi_{1}^{*} \\
\vdots \\
\Phi_{n}^{*}
\end{array}\right)
\end{aligned}
$$

Matrix representation of time-independent Schrodinger equation $\mathbf{H C}=\mathbf{S C E}$

