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Self-Consistent Field (SCF)
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Time-independent Schrödinger equation
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Kinetic energy

Electron-nuclear attraction

Electron-electron repulsion

Responsible for electronic correlation !



3 Schrödinger equation: Is that ALL ?

No !!!

Boundary conditions limit the solutions.

Electrons are Fermions!



4 Determinantal wave function
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5 Slater determinant

He atom
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6 Why single determinant ?

➢ Simple description of electronic wave function

➢ Simple for computational purposes

➢ Simple for mathematical transformations

➢ Simple to extend to correlated methods



7

Orbitals as single particle wave functions
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Orbitals as single particle wave functions

Single particle properties are sum over the 

molecular orbitals. (Slater-Condon rules)

It significantly provides live picture of the 

molecular orbitals.



9 How to form orbitals ?

➢ Solution of Schrödinger equation (impractical)

➢ Plane wave

➢ Linear combination of atomic orbitals
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Linear Combination of Atomic Orbitals

(LCAO)

One can think of molecular orbitals as 
summation over atomic orbitals:

=
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iijj c φψ
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How LCAO coefficients can be chosen?

➢ Symmetry considerations

➢ Experimental observations

➢ Solution of Schrödinger equation

➢ Energy minimization
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Can LCAO provide a solution to the

Time-independent Schrödinger equation?

Never !!!

Instead, it can approximates the exact 
solutions.



13 Variation principle

No trial wave function’s energy is below 
the exact solution of Schrödinger equation.

NATURE, choose the best way:

It tells us something: Energy is special !



14 Variation technique

If the energy is upper bound, one may 
minimize the energy to approach to exact 
solution.
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15
Linear variation

++= 2211 fcfc

The coefficients can be chosen to form a 
linear combination:

Remember the LCAO ! =
i

iijj c φψ



16 Can linear variation help to find the 

LCAO coefficients ?

No !!!

Electronic wave function is not linear with 
respect to molecular orbitals. Because it 
must be antisymmetric:
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17 Minimization of determinantal energy

To find approximate solution, one may 
minimize the energy of determinant.

It is Hartree-Fock (HF) method. Does it 
have other names?



18

➢Self Consistent Field (SCF) approximation

➢Hartree-Fock (HF) method

➢Roothan equations

Different terms, pointing to the same

concept
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➢SCF: Physical picture

➢HF: Mathematical picture

➢Roothan: Matrix representation

Different terms, pointing to the same

concept



20
Definition

Restricted

Closed-Shell

Restricted

Open-Shell

Unrestricted

Closed-Shell

Unrestricted

Open-Shell



21 Restricted closed-shell Hartree Fock
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Electronic wave function is

where,

Energy is defined as

Wish to find coefficients so that

Subject to 1| =



22 Canonical Hartree Fock equations

The energetic minimization reduces to an 
eigenvalue problem, called as Canonical 
Hartree-Fock equations:

aaaF ψψ =ˆ

Fock operator

Canonical Molecular Orbital 

(CMO)

Orbital energy



23 Hartree Fock operator
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Coulomb operator

Core Hamiltonian operator

Fock operator

Restricted closed-shell Hartree Fock operator 
is defined as:



24 Coulomb and Exchange operators
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Coulomb operator:

Exchange operator:

Note the difference!
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25 How to solve HF equations?

)1(
1

)2()2()1()1(ˆ

12

*

2 abbab
r

dJ ψψψψ 







=  

)1(
1

)2()2()1()1(ˆ

12

*

2 babab
r

dK ψψψψ 







=  

aaaF ψψ =ˆ

)ˆˆ2(ˆˆ
2

a

a

acore KJHF

N

−+= 
Operator depends on its 
eigenvectors!



26
Hartree-Fock procedure 

(Quick glance)

Orbitals

Fock operator

Eigenorbitals 
Eigenvalues

Converged?
No

Finish
Yes

Flowchart of iterative process to 
solve Hartree-Fock equations:

Initial guess
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Roothaan equations are matrix representation of Hartree-

Fock equations, i.e., the CMOs are considered as

superposition over base elements or basis set. In general,

base elements are atomic orbitals (LCAO).

Roothaan equations

abδ|  ba ψψ

Basis set does not necessarily provides an orthogonal

set.



28 Matrix elements
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29 Matrix elements
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Coulomb and Exchange matrix elements
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Coulomb operator:

Exchange operator:

Note the difference!



31 Interpretation of Coulomb term
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Classical repulsion potential energy:

is defined as classical repulsion between orbitals a and b.
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32 Interpretation of Exchange term
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No classical interpretation for Exchange !!



33
Hartree-Fock procedure 

(Matrix approach)

Choose a base

Density matrix

Fock matrix
Eigenfunctions 

Eigenvalues

Converged?

No

Finish

Overlap matrix

Initial guess 

(LCAO Coefficients)

Orthogonalizer 
matrix

Core Hamiltonian 
matrix

Coulomb & Exchange 
matrices

Yes



34 How many Electron repulsion integral 

are required?
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35
Crisis

4n

ERI should be computed for each SCF cycle.
4n
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Fullerene at HF/6-31+G* level contains 1140 basis elements.

1,688,960,160,000 ERIs should be computed !



36 Handling Electron repulsion integrals

➢Indirect: 

All ERIs are computed once and stored on physical disk. 
Restored when needed.

➢In Core: 

All ERIs are computed once and stored on physical memory. 
Restored when needed.

➢Direct (On the Fly): 

ERI is computed when needed.

Optimum for 
modern computers

Optimum for too slow CPUs

Optimum for very small basis sets
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Resources are limited !

1,688,960,160,000

No computer can evaluate faster 

than 1,000,000 ERI per second.

Who can wait 469 hours for C60 ?



38 Strategies can be employed to decrease 

the number of ERI computations:

➢ ERI symmetry

➢ Loop over ERIs, rather Fock matrix elements

➢ Density matrix inspection

➢ Cauchy-Schwarz inequality

➢ Orbital rotation

➢ Sharing common exponent



39 ERI symmetry

For real basis sets, all eight ERIs are equal:
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How can it help when using DIRECT method?
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And so on for G12, …

Equivalent ERIs
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Loop over G is wrong

Loop over ERI is correct

22211211 then,then,then, GGGG

)22|22(then,)21|22(then,)12|12(

then,)22|11(then,)12|11(then,)11|11(

At each step, distribute the ERI to G elements

Inefficient, as each step requires 8 ERI computation
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Density matrix inspection

If one or more of these elements are (almost) zero, why the 
ERIs should be computed?



43 Density matrix inspection

Example: Ni2 density matrix optimized at HF/STO-3G level



44 Cauchy-Schwarz inequality

Square of inner product of two vectors is equal or less than 
product of their self inner product.
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It can be generalized to ERIs:



45 Integral prescreening

Form g matrix, whose elements are
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)|( ijiji j =g

If               is less than a threshold, e.g., 10-10, why should one 

concern with                   ? 
cdabgg

)|( cdab



46 Good News !

Because of the use of cutoffs, the cost of direct

SCF scales with molecular size as n2.7 or better,

while conventional SCF scales in practice as n3.5,

where n is the number of basis elements.

H. B. Schlegel and M. J. Frisch, in Theoretical and Computational 
Models for Organic Chemistry.
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S.F. Boys, 

Proc. R. Soc. London Ser. A, 

200, 542 (1950)



48 Gaussian type orbitals (GTO)
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GTOs are extremely efficient candidates for Slater type 
orbitals.

But they are different:



49 Contracted orbitals

A Slater type orbital can 
be fitted to a linear 
combination of GTOs.

Contraction coefficients



50 ERI evaluation over 1s GTOs
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51 Transformation to 1s orbitals

It is possible to rewrite (approximate) a p-type GTO as linear 
combination of off-center s-type GTOs:

True p-type GTO Two s-type GTO

ba ssp 98.098.0 +=

)|(98.0)|(98.0)|( 321321321 ba ssp φφφφφφφφφ +=

More GTOs to combine, more accurate fitting !



52 Using table of ERIs

One can formulate ERIs 
with all possible angular 
momenta before 
implementation into the 
code.

The number of possible 
ERIs for d orbitals are 
significantly large!



53
Sharing common exponents

Have you ever encountered sp shells? It makes ERI computations 
more efficient.

Exponents

Coefficients

Shared 
Exponents

p shell

s shell



54 SCF techniques

➢ Intrinsic convergence

➢ Oscillation damping

➢ Interpolation of the density matrix

➢ direct inversion of the iterative subspace

➢ Quadratic convergence



55 SCF Energy

1212112211 22 KJJhhE −+++=

Electronic energy can be simply expressed in terms 
of core Hamiltonian, Coulomb and exchange terms.

Core Hamiltonian: all electrons

Coulomb: between all electrons

Exchange: between the same spin electrons



56 SCF Energy
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Literature: HF method does not include non-classical 
terms for electron-electron repulsion energy, i.e., 
opposite spin electrons are not correlated within HF 
energy.

Correlated methods includes the correlation for both 
opposite and same spin electrons.
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Example: Hydrogen molecule at 

Restricted Hartree-Fock (RHF) level

11112 JhE +=

Hydrogen molecule is the simplest diatomic system with non-zero 
electron correlation energy.

|| 11ψψ=

Bonding orbital

Anti-Bonding orbital
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or



58 Example: Hydrogen molecule

At large distances, it is expected that 
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Let’s examine SCF energy of H2 at large distances:
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59 Example: Hydrogen molecule

Relative error of energy at large distances is significant:
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How about the error at equilibrium 
geometry? 

4% error for bond length

Large error !!



60 Example: Unrestricted hydrogen molecule

Unrestricted Hartree-Fock 
(UHF) potential energy curve 
for hydrogen molecule 
predicts better energies than 
RHF at large distances

Energy is correct,  but wave 
function not! It is not a pure 
singlet spin state.
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61
Example: SCF bond length of 

some ten electron molecule

It seems that SCF well predicts the bond lengths!

Basis set CH4 NH3 H2O FH

STO-3G 2.047 1.952 1.871 1.807

4-31G 2.043 1.873 1.797 1.742

Near-HF-Limit 2.048 1.890 1.776 1.696

Experiment 2.050 1.912 1.809 1.733



62 Nice pictures vanish when zoom in!

Is Slater determinant the right 

wavefunction?
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