Self-Consistent Field (SCF)




Time-independent Schrodinger equation
HY =EV¥

Electron-nuclear attraction

%ZV? —Z A Z r
| | ij

Kinetic energy

Electron-electron repulsion

!

Responsible for electronic correlation /



Schrodinger equation: Is that ALL ?

No !

ary conditions limit the solutions.

trons are Fermions!



Determinantal wave function
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Slater determinant

He atom
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Why single determinant ?

> Simple description of electronic wave function

> Simple for computational purposes

ple for mathematical transformations

> Simple to extend to correlated methods



Orbitals as single particle wave functions




Orbitals as single particle wave functions

Single particle properties are sum over the
molecular orbitals. (Slater-Condon rules)

ignificantly provides live picture of the
ecular orbitals.



How to form orbitals ?

ion of Schrodinger equation (impractical)

> Plane wave

inear combination of atomic orbitals



Linear Combination of Atomic Orbitals
(LCAO)

One can think of molecular orbitals as
tion over atomic orbitals:

V= Zcijggi




How LCAOQO coefficients can be chosen?

etry considerations

» EXperimental observations

»/Solution of Schrodinger equation

Energy minimization



Can LCAO provide a solution to the
Time-independent Schrodinger equation?

Never 111

Instead, it can approximates the exact
solutions.



Variation principle

NATURE, choose the best way:

1al wave function’s energy is below
the exact solution of Schrodinger equation.

tells us something: Energy is special !



Variation technique

If the energy is upper bound, one may
minimize the energy to approach to exact
solution.

Y =1(x,vy,zc,cC,,-++,C,)
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_Inear variation

The coefficients can be chosen to form a
linear combination:

¥Y=cf +c,f,+-

Remember the LCAO ! QDJ- = Z Cij(Pi
|



Can linear variation help to find the
LCAO coefficients ?

No !

Electronic wave function is not linear with
respect to molecular orbitals. Because it
st be antisymmetric:

¥=1(1)9(2)-9()1(2)




Minimization of determinantal energy

To find approximate solution, one may
minimize the energy of determinant.

It is'Hartree-Fock (HF) method. Does it
have other names?




Different terms, pointing to the same
concept

»>Self Consistent Field (SCF) approximation
»>Hartree-Fock (HF) method

othan equations




Different terms, pointing to the same
concept

»SCF: Physical picture

»HF7 Mathematical picture

othan: Matrix representation



Definition
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Restricted closed-shell Hartree Fock

Electronic wave functionis ' — | ]7011?1170217?2 i ¢%¢% ‘
P = Z Cij P

Energy is defined as F = <‘~P ‘ H ‘\P>
oE

ish to find coefficients so that (—) C\#Ci =0
J7R%

where,

ij
ubject to <\P ‘ \P> =1



Canonical Hartree Fock equations

The energetic minimization reduces to an
eigenvalue problem, called as Canonical
Hartree-Fock equations:

ock operator Orbital energy
A /
F 170 {A - ga gb a

Canonical Molecular Orbital
(CMO)



Hartree Fock operator

Restricted closed-shell Hartree Fock operator
Is defined as:

Core Hamiltonian operator

X % A A
o I:Icore_l_Z(Z‘]a B Ka)
a | g

Exchange operator
Coulomb operator



Coulomb and Exchange operators

Coulomb operator:

309, =| [dr.; @9, 9,

Exchange operator:

0O, =| [0r.0; @9, 4,0

Note the difference!
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How to solve HF equations?

ga¢a
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Operator depends on its
eigenvectors!

P, (1)




Flowchart of iterative process to
solve Hartree-Fock equations:

Finish

l
Ye No

Hartree-Fock procedure
(Quick glance)

Initial guess

l

Orbitals

l

Fock operator

l

Eigenorbitals
Eigenvalues




Roothaan equations

Roothaan equations are matrix representation of Hartree-
Fock equations, 1.e., the CMOs are considered as
uperposition over base elements or basis set. In general,
pase elements are atomic orbitals (LCAO).

| BasJs set does not necessarily provides an orthogonal
et

\ 1' ‘¢b> 7 8ab




Matrix elements

Overlap matrix:
S, = [0, )y, M)dr,

Fock matrix:
F,, = [, (1)Fy, @)dr,
F,=H+G
G, = ; P [(v]oh) =4 (sik|ov)]




Matrix elements

Density matrix:

N
2
=2) ,C..Cl
a

Electron repulsion integral (ERI):

(8bcd) = [ p; W, (1) ; ), (2)drer,

12




Coulomb and Exchange matrix elements

Coulomb operator:

I jw; D) rigb; (2)y,(2)d7,dz,

Exchange operator:

o= [V 0P, 0 ¢b<2>¢a(2)dqdrz

Note the difference!




Interpretation of Coulomb term

P ‘ - ) ‘ ’ £
nsider to classical charge clouds:
ssical repulsion potential ene.-gy/vf % 1 (1) /0 2 (2) d r d r

J ab — nga (1)77ba (1\

r12
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Is defined as classical repulsion between orbitals a and b.



Interpretation of Exchange term

N
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(2)dr,dz,
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o= waa)w?(l) ub?(z)w?(z)dqdrz

No classical interpretation for Exchange !!



Choose a base

Initial guess
CAO Cogefficients)

/|

Hartree-Fock procedure

eqéity matrix -

\ |

matrices

Coulomb & Exchange

(Matrix approach)
; Orthogonalizer
Overlap matrix " matrix
/ Core Hamiltonian
matrix
Finish
" Fock matrix * . Eigenfunctions

\\

Eigenvalues




How many Electron repulsion integral
are required?

If the base Is composed of n elements, each matrix will
have nxn dimensions.

'70* (1) ﬁ% (].)dl’l — . n®elements

2
N
b SO G,, — because Fis symmetric

ZF’M [(,UV | oh) - (w» jov)]

2n computatio nfor each element



n4Crisis

N i ERI should be computed for each SCF cycle.

(8bcd) = [ p; W, (1) ; ), (2)drer,

1

Fullerene at HF/6-31+G* level contains 1140 basis elements.

1,688,960,160,000 ERIs should be computed /



Handling Electron repulsion integrals

»Indirect: Optimum for too slow CPUs

All ERIs are computed once and stored on physical disk.
Restored when needed.

>In Core: Optimum for very small basis sets

Il ERIs are computed once and stored on physical memory.
Restored when needed.

»>Direct (On the Fly):

ERI is computed when needed.

Optimum for
modern computer



Resources are limited !

No computer can evaluate faster
than 1,000,000 ERI per second.

Who can wait 469 hours for C60 ?

— S




Strategies can be employed to decrease
the number of ERI computations:

» ERI symmetry
> Loop over ERIs, rather Fock matrix elements

> Density matrix inspection

» Cauchy-Schwarz inequality
> Orbital rotation

> Sharing common exponent




ERI symmetry

(ab cd) = [ p; ), (1) 9. (D)g, Q)drr,

12
Forreal basis sets, all eight ERIs are equal:

cd)=(balcd)=(ab|dc)=(ba|dc)
ab) = (cd |ba) = (dc|ab) = (dc|ba)

How can it help when using DIRECT method?



Equivalent ERIs

F,=H, +G,
G,, = P [(uv|oh) L (st ov)]
Ao

PolA1]oh) -3 (]| o1)]

= P,[(1[10) - 1 (11|11)] + P,[(11]12) - 1 (11| 21)]
+P,[(11]21) - 1 (12|11)]+ P,,[(11] 22) - 1 (12| 21)]

so on for Gy, ...



L_oop over G Is wrong
Loop over ERI Is correct

G, ,thenG,,,then G, , then G,

efficient, as each step requires 8 ERI computation

(11|11),then (11]12),then (11]22) , then

(12]12),then (22]21),then (22]22)
At each step, distribute the ERI to G elements




PLl(A1
P, (11

G,u= Y P, [A1] o)~ 4 (11 o1)

11) -1 (11]12)]+

12

21)— 1 (12]11)] +

Density matrix inspection

[(11]12) - 4 (11| 21)]

[(11]22) -5 (12]21)]

If one or more of these elements are (almost) zero, why the
ERIs should be computed?



Density matrix inspection
/ Example: Ni, density matrix optimized at HF/STO-3G level

Ready
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Cauchy-Schwarz inequality

— — 2 — — — -
(A.B)*<(A.A)(B.B)
Square of inner product of two vectors is equal or less than
product of their self inner product.

t can be generalized to ERIs:

(ab|cd)< \/(ab |ab)(cd |cd)



Integral prescreening

Form g matrix, whose elements are gij — (|J ‘ U)

(ab|cd)< \/g,,0.

If §.,9.4 is less than a threshold, e.g., 10-1%, why should one
concern with (ab | cd ) ?




Good News !

Because of the use of cutoffs, the cost of direct
SCF scales with molecular size as n%’ or better,
while conventional SCF scales in practice as n>,
IS the number of basis elements.

. B. Schlegel and M. J. Frisch, in Theoretical and Computational
Maodels for Organic Chemistry.
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Electronic wave functions

I. A general method of calculation for the stationary
states of any molecular system

By 3. F. Bovs, Theoretical Chemistry Department, University of Cambridge®

(Communicated by Sir Alfred Egerton, F.R.S —Received 31 August 1949)

This communication deals with the general theory of obtaining numerical electronic wave
funetions for the stationary statos of atorns and molecules. Tt is shown that by taking
Gaussian functions, and functions derived from these by differentiation with respect to the
parameters, complete systems of functions can be constructed appropriste to any molacular
problem, and that all the necessary integrals can be explieitly ovaluated, These can be used
in eonnexion with the molecular orbital methed, or localized bond method, or the general
method of teeating linear combinations of many Slater determinants by the variational
proeedurs, This general method of obtaining & ssquence of solutions converging to the
aecurate solution is examined, It is shown that the only obstacle to the evaluation of wave
functions of any roguired degree of accuracy is the labour of computation. A modification
of the general method applicable to atoms is discussed and considered to be extremely
practicable.

1. INTRODUCTION

In this communication is described the first of a series of investigations undertaken
with the general aim of developing better methods of evaluating electronic wave
functions and of using these to obtain new and more accurate data on atomie and
molecular structure, It is well known that if the electronie stationary state wave
functions can be evaluated for the various configurations of a system of atomic
nuclei, then most of the spectral, chemical and physical properties of the corre-
sponding system of atoms can be calculated. Thig is true when the atoms form a
stable molecule, or when the system consists of a single atom, or when the system
corresponds to an unstable configuration of atoms such as oceur in the intermediate
stages of a chemical reaction. Hence this general problem includes in principle a
large number of the problems of theoretical chemistry, and a converging method of
solution would effectively solve these problems.

The first purpose of this communication is to describe such a method of successive
approximation by which this stationary state electronic wave funection for any
configuration of atoms can be calculated to any desired degree of accuracy by
inclusion of sufficient terms. This method does not depend on any numerical in-
tegration processes. Such a method has not heen previously reported. The new
mathematical analysis which has been carried out to make this possible consists
essentially of the evaluation of the Schrodinger integrals between (Faussian pro-
bability functions. The most complicated integral which is required is that of the
electronic interaction between one product of two Gaussians on different centres
with another product of two other Gaussians. These integrals and fhe simpler ones
required are all evaluated explicitly. These integrals also provide the bases for the

* Formerly I.C.I. Research Fellow, Imperial College, London.
[ 542 ]



Gaussian type orbitals (GTO)

Angular
momentum

T 2
G(r;¢,n,R)=(x-R)™(y-R,)"(z-R,)"e """
o \Center

Exponent

GTOs are extremely efficient candidates for Slater type

But they are different:

s @

s 10 15 20 25 30 35 40
Raodius {a.u.)



Contracted orbitals

Slater type orbital can
e fitted o0 a linear
ombingtion of GTOs.

.0 .5 1.0 IS5 20 25 30 35 40
Radius (a.u.)

HSOF(C = 1.24, STO-3G) = 0.444635¢SF(0.168856) + 0.535328¢5F(0.623913) + 0.154329¢57(3.42525)

Contraction coefficients



ERI evaluation over 1s GTOs

2
2 P - (P-Q)?

(‘OAOB IOCOD):(OA”OB)(OC ”OB) e 2) e iy du
N T e
Overlap can be transformed to
\ 4 1
int I 2
centered at Integra Fm (X) _ jthe—xt dt

0
(Incomplete Gamma Function)

where,
P_Q/AA*‘Q/BB Q_CCC+§DD p:(§A+§B)(§C+§D)
) Gatip ) Gct6p Catéptiet6p




Transformation to 1s orbitals

It is possible to rewrite (approximate) a p-type GTO as linear
combination of off-center s-type GTOs:

True p-type GTO 8 8> Two s-type GTO
p=0.98s, +0.98s,

0P, | 93P) = 0.98(¢,¢0, | ©55,) +0.98(¢,0, | ©55;)

re GTOs to combine, more accurate fitting !



One can formulate ERIs
with all possible angular
momenta before

implementation into the

The humber of possible
RJs for dorbitals are
ighificantly large!

Using table of ERIs

(55,509 = (£ + ) "2 K(&,, & ABYK(E,,£4,CD) Fy(T)
(p5,5) V= (P, — A4,) (55,5 + (W, — P,) (35, 55)""
P:5 2x$)? = (Qx — G ( pis, 55)@ + ( W, — Q) ( ps, ss)V

)ill
——-—2@ g (ss, 5

(P Py 58)” = (P, — B)) (i3, 55 + (W, — P} (p,s, ss)
sﬂ'
+ =L { (85, 55)@ — £ (55, 55) "}
2 &
(p; F_faﬂks}m= (Qx _'Ck){PIPjrﬂ}[m'l' (W, — Q) (p, Pj:ﬂ]‘m

{6.& {-'FPJ, ﬂ)"] + 5}.!: ( Pi% H)m}

1
+
28+
(P: Py P2 PO = (@1 — D) (P, s ) + (W, — Q) ( Py 2y Pi5)Y

+ 2(4,:_ 7 {8, (@;:Pk-ﬂm + &, ( pis, pi5)V}



Sharing common exponents

Have you ever encountered sp shells? It makes ERI computations

more efficient.
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SCF techniques

> Intrinsic convergence

> Oscillation damping

> Interpolation of the density matrix
> direct inversion of the iterative subspace

> Quadratic convergence




SCF Energy

Electronic energy can be simply expressed in terms
of core Hamiltonian, Coulomb and exchange terms.

Core Hamiltonian: all electrons

Coulomb: between all electrons

Exchange: between the same spin electrons

E=2h,+h,+J,,+2],-K,



SCF Energy

iterature: HF method does not include non-classical
erms for electron-electron repulsion energy, i.e.,
pposite spin electrons are not correlated within HF

ed methods includes the correlation for both
posite and same spin electrons.

E=2h,+h,+J,,+2],,-K,,



Example: Hydrogen molecule at
Restricted Hartree-Fock (RHF) level

ydrogen molecule is the simplest diatomic system with non-zero
lectron correlation energy.

\P s
= 2h11 iR ‘]11 I’bl i Bonding orbital

1#117?1\ I]DZ — Anti-Bonding orbital



Example: Hydrogen molecule

At large distances, it is expected that E H, =2E H

Let’'s examine SCF energy of H2 at large distances:

haa - hlsls
J,, =34, =5 (1s1s|1s1s)

(lim E, )-2E, =L(ss|1s1s) 7 ()

R— 400



Example: Hydrogen molecule

elative error of energy at large distances is significant:

2E,/=-0.9332 a.u.
> (1s1s|¥s1s) = 0.3873 a.u.

Large error !!

w about the error at equilibrium

E(H,)-2E(H) (a.u)

error for bond length | P

-0.1 ’_ ,/:-— Exact




E(H,) -2E(H) (aw.)

004 |
002 |

0.00

Example: Unrestricted hydrogen molecule

10 1.4 1B 2.2 28 30 34 Rilou)
'] Ly 1 i l...-.' 'S il

002 |
004 |
-0.08
-008 |-
010}

=012

UHF 7
’f
s

/e Exoct

;’ (Kolos-Wolniewicz)

e :Wa% ‘

Unrestricted Hartree-Fock
(UHF) potential energy curve
for hydrogen molecule
predicts better energies than
RHF at large distances

Energy is correct, but wave
function not! It is not a pure
singlet spin state.

S2Y £\



Example: SCF bond length of
some ten electron molecule

It seems that SCF well predicts the bond lengths!

CH4 NH3 H20 FH

2.047 1.952 1.871 1.807
2.043 1.873 1.797 1.742
2.048 1.890 1.776 1.696

2.050 1.912 1.809 1.733




Nice pictures vanish when zoom In!

(@)

Is Slater determinant the right
wavefunction?







